职称: 教授
邮箱: znie@hust.edu.cn
教育背景
l 2019.02 — 2022.12 加州大学洛杉矶分校 博士后
l 2012.09 — 2018.10 清华大学工程物理系 博士
l 2008.09 — 2012.07 清华大学工程物理系 学士
研究方向
l 激光等离子体物理;空气激光;超快光学;等离子体加速器
学术荣誉
2018年中国光学十大进展(基础研究类):“基于等离子体结构光子减速器的单周期相对论光强红外脉冲的产生”
2019年清华大学优秀博士论文
2020年蔡诗东等离子体物理奖
主要学术成就
长期从事激光等离子体物理及空气激光研究,在基于等离子体尾场的超短超强中红外光产生及高能自旋极化电子束产生等研究领域取得了一系列突出研究成果。主要成果有:(1)提出并实验验证了一种基于等离子体“光子减速”机制产生相对论光强、波长可调谐的单周期中红外脉冲新方案,填补了 3-20 μm 波长范围内超强单周期中红外光源的空白;(2)提出了一种在等离子体尾场内直接产生并加速自旋极化电子束的新方案,解决了长期以来无法在等离子体尾场中直接产生并加速自旋极化电子束的难题。
发表SCI论文30余篇,其中作为第一/通讯作者发表在包括Nature Photonics(封面), NatureCommunications, Physical Review Letters等知名期刊。受邀在美国物理学会等离子体物理年会(APS-DPP)、国际新型加速器会议Advanced Accelerator Concepts Workshop等国际知名会议上做邀请报告。
发表论文
1. Z. Nie, C.-H. Pai, J. F. Hua, C. J. Zhang, Y. P. Wu, Y. Wan, F. Li, J. Zhang, Z. Cheng, Q. Q. Su, S. Liu, Y. Ma,
X. N. Ning, Y. X. He, W. Lu, H.-H. Chu, J. Wang, W. B. Mori and C. Joshi, “Relativistic single-cycle tunable
infrared pulses generated from a tailored plasma density structure.” Nature Photonics 12, 489-494 (2018).
(Nature Photonics 2018年8月封面)
2. Z. Nie, C.-H. Pai, J. F. Hua, C. J. Zhang, Y. P. Wu, Y. Wan, F. Li, J. Zhang, Z. Cheng, Q. Q. Su, S. Liu, Y. Ma,
X. N. Ning, Y. X. He, W. Lu, H.-H. Chu, J. Wang, W. B. Mori and C. Joshi, “Photon deceleration in plasma
wakes generates single-cycle relativistic tunable infrared pulses.” Nature Communications 11, 2787 (2020).
3. Z. Nie, F. Li, F. Morales, S. Patchkovskii, O. Smirnova, W. An, N. Nambu, D. Matteo, K. A. Marsh, F. Tsung, W.
B. Mori and C. Joshi, “In Situ Generation of High-Energy Spin-Polarized Electrons in a Beam-Driven Plasma
Wakefield Accelerator.” Physical Review Letters 126, 054801 (2021).
4. Z. Nie, F. Li, F. Morales, S. Patchkovskii, O. Smirnova, W. An, C. Zhang, Y. Wu, N. Nambu, D. Matteo, K. A.
Marsh, F. Tsung, W. B. Mori, and C. Joshi, "Highly spin-polarized multi-GeV electron beams generated by
single-species plasma photocathodes," Phys. Rev. Res. 4, 033015 (2022).
5. Z. Nie, N. Nambu, K. A. Marsh, E. Welch, D. Matteo, C. Zhang, Y. Wu, S. Patchkovskii, F. Morales, O. Smirnova,
and C. Joshi, "Cross-polarized common-path temporal interferometry for high-sensitivity strong-field ionization
measurements," Opt. Express 30(14), 25696 (2022).
6. Z. Nie, Y. P. Wu, C. J. Zhang, W. B. Mori, C. Joshi, W. Lu, C.-H. Pai, J. F. Hua and J. Wang, “Ultra-short pulse
generation from mid-IR to THz range using plasma wakes and relativistic ionization fronts.” Physics of Plasmas
28, 023106 (2021).
7. Y. P. Wu, J. F. Hua, Z. Zhou, J. Zhang, S. Liu, B. Peng, Y. Fang, X. N. Ning, Z. Nie, F. Li, C. J. Zhang, C.-H.
Pai, Y. C. Du, W. Lu, W. B. Mori, and C. Joshi, “High-throughput injection–acceleration of electron bunches
from a linear accelerator to a laser wakefield accelerator.” Nature Physics (2021).
8. A. Sampath, X. Davoine, S.Corde, L. Gremillet, M. Gilljohann, M. Sangal, C. H. Keitel, R. Ariniello, J. Cary, H.
Ekerfelt, C. Emma, F. Fiuza, H. Fujii, M. Hogan, C. Joshi, A. Knetsch, O. Kononenko, V. Lee, M. Litos, K.
Marsh, Z. Nie, B. O’Shea, J. R. Peterson, P. S. M. Claveria, D. Storey, Y. Wu, X. Xu, C. Zhang, and M. Tamburini,
“Extremely Dense Gamma-Ray Pulses in Electron Beam-Multifoil Collisions.” Physical Review Letters 126,
064801 (2021).
9. Y. P. Wu, X. L. Xu, C. J. Zhang, Z. Nie, M. Sinclair, A. Farrell, K. A. Marsh, J.F. Hua, W. Lu, W. B. Mori, and C.
Joshi, “Efficient generation of tunable magnetic and optical vortices using plasmas.” Physical Review Research
5, L012011 (2023).
10. Y. P. Wu, J. F. Hua, Z. Zhou, J. Zhang, S. Liu, B. Peng, Y. Fang, Z. Nie, X. N. Ning, C.-H. Pai, Y. C. Du, W. Lu,
C. J. Zhang, W. B. Mori, and C. Joshi, “Phase Space Dynamics of a Plasma Wakefield Dechirper for Energy
Spread Reduction.” Physical Review Letters 122, 204804 (2019).
11. C.-K. Huang, C. J. Zhang, Z. Nie, K. A. Marsh, C. E. Clayton and C. Joshi, “Conservation of angular momentum
in second harmonic generation from under-dense plasmas.” Communications Physics 3, 213 (2020).
12. C. J. Zhang, Z. Nie, Y. P. Wu, M. Sinclair, C.-K. Huang, K. A. Marsh, and C. Joshi, “Ionization induced plasma
grating and its applications in strong-field ionization measurements.” Plasma Phys. Control. Fusion 63, 095011
(2021).
13. Y. P. Wu, J. F. Hua, Z. Zhou, J. Zhang, S. Liu, B. Peng, Y. Fang, X. N. Ning, Z. Nie, Q. L. Tian, C.-H. Pai, Y. C.
Du, W. Lu, W. B. Mori, and C. Joshi, “Tunable plasma linearizer for compensation of nonlinear energy chirp.”
Physical Review Applied 16, 024056 (2021).
14. Y. Wan, I. A. Andriyash, C.-H. Pai, J. F. Hua, C. J. Zhang, F. Li, Y. P. Wu, Z. Nie, W. B. Mori, W. Lu, V. Malka
and C. Joshi, “Ion acceleration with an ultra-intense two-frequency laser tweezer.” New Journal of Physics 22,
052002 (2020).
15. Y. P. Wu, J. F. Hua, C.-H. Pai, W. An, Z. Zhou, J. Zhang, S. Liu, B. Peng, Y. Fang, S. Y. Zhou, X. L. Xu, C. J.
Zhang, F. Li, Z. Nie, W. Lu, W. B. Mori, and C. Joshi, “Near-ideal dechirper for plasma-based electron and
positron acceleration using a hollow channel plasma.” Physical Review Applied 12, 064011 (2019).
16. Q. Q. Su, J. F. Hua, Z. Nie, Y. Ma, S. Liu, Y. F. Zheng, C.-H. Pai, and W. Lu, “Temporal diagnostics of
femtosecond electron bunches with complex structures using sparsity-based algorithm.” Physical Review
Accelerators and Beams 21, 112801 (2018).
17. F. Li, Z. Nie, Y. P. Wu, B. Guo, X. H. Zhang, S. Huang, J. Zhang, Z. Cheng, Y. Ma, Y. Fang, C. J. Zhang, Y.
Wan, X. L. Xu, J. F. Hua, C.-H. Pai, W. Lu and W. B. Mori, “Transverse phase space diagnostics for ionization
injection in laser plasma acceleration using permanent magnetic quadrupoles.” Plasma Physics and Controlled
Fusion 60, 044007 (2018).
18. F. Li, Y. P. Wu, Z. Nie, B. Guo, X. H. Zhang, S. Huang, J. Zhang, Z. Cheng, Y. Ma, Y. Fang, C.J. Zhang, Y. Wan,
X. L. Xu, J. F. Hua, C.-H. Pai, W. Lu and Y. Q. Gu, "On the feasibility of sub-100 nm rad emittance measurement
in plasma accelerators using permanent magnetic quadrupoles." Plasma Physics and Controlled Fusion 60,
014029 (2017).