基本信息:
姓名:秦承志
职称:副教授
电子邮箱:qinchengzhi@hust.edu.cn
办公地址:18luck新利电竞
逸夫科技楼北804
通讯地址:湖北省武汉市洪山区珞喻路1037号430074,18luck新利电竞
物理学院
谷歌学术主页:https://scholar.google.com/citations?hl=en&user=vzziJUQAAAAJ
超快光学实验室网站:http://ufolab.phys.hust.edu.cn/
教育背景:
2010/09-2014/06 18luck新利电竞
光学与电子信息学院 光电信息工程学士学位
2014/09-2019/06 18luck新利电竞
物理学院 光学博士学位
研究经历:
2019/07-2019/10 武汉光电国家研究中心 国家博士后创新人才支持计划
2019/11-2021/04 美国德克萨斯农工大学(Texas A&M University)航天航空系 博士后
2021/05-2021/06 武汉光电国家研究中心 国家博士后创新人才支持计划
2021/07-至今 18luck新利电竞
物理学院 副教授
主持科研项目:
国家自然科学基金 青年科学基金 (No.12204185, 30万, 2023.01 ~ 2025.12);
国家自然科学基金 理论物理专项 (No.11947209, 18万, 2020.01 ~ 2020.12);
博士后创新人才支持计划 (No. BX20190129, 20万, 2019.07 ~ 2021.06);
博士后科学基金面上项目一等资助 (No. 2019M660180, 12万, 2019.12 ~ 2021.06);
湖北省自然科学基金 面上项目(No. 2022CFB036, 5万, 2022.10 ~ 2024.10)。
奖励和荣誉称号:
2023年入选18luck新利电竞
重大学术进展,题为《合成维度光子调控技术及应用》,第三完成人;
2022年入选湖北省“楚天学子”人才称号;
2019年入选博士后创新人才支持计划(博新计划)。
研究方向及其成果:
长期从事光子合成维度、拓扑光子学和非厄米光子学实验和理论研究。亮点成果包括:(1)建立并论证了移动光学规范势的离散时间折射机制,实现了时域全反射古斯汉森位移的测量;(1)提出了频域光子规范势概念,发展了基于规范势的频率离散调控和频域布洛赫振荡实时测量技术。(3)基于光子磁通量偏置的微环阵列提出了赝自旋-轨道耦合和反宇称-时间对称(Anti-PT)相变机制,实现了自旋光子路由器和任意隧穿效率的片上滤波器。研究成果为光通信、光场调控和光学信息处理提供了全新机制和应用范例。在国际重要光学和物理期刊上发表论文40余篇;其中第一作者11篇,共同第一作者6篇,通讯作者(含共同通讯)6篇;代表性工作为:第一作者Phys. Rev. Lett. 1篇,Laser Photonics Rev 1篇,ACS Photonics 1篇,PRA/PRB/PRApplied/OE 10余篇;共同通讯Science Advances 1篇,唯一通讯Laser Photonics Rev 1篇;共同第一作者Nat. Commun. 2篇,PNAS 1篇,Light: Sci. & Appl. 1篇。被Science, Nat. Photonics, Rev. Mod. Phys., Phys. Rev. Lett.等权威期刊多次正面引用,总引用达1100余次。
代表性论文:
[24] C. Qin†, H. Ye†, S. Wang†, L. Zhao, M. Liu, Y. Li, X. Hu, C. Liu, B. Wang*, S. Longhi*, and P. Lu*, “Observation of discrete-light temporal refraction by moving potentials with broken Galilean invariance,” Nat. Commun, minor revision (2024). (†表示第一作者, *表示通讯作者,下同)
[23] C. Qin†, F. Zhou†, Y. Peng†, D. Sounas, X. Zhu, B. Wang*, J. Dong*, X. Zhang, A. Alù* and P. Lu*, “Spectrum Control through Discrete Frequency Diffraction in the Presence of Photonic Gauge Potentials,” Phys. Rev. Lett. 120, 133901 (2018).
[22] C. Qin, B. Wang*, Shanhui Fan*, and P. Lu*, “Gauge-Flux-Induced Anti-PT Phase Transitions for Extreme Control of Channel-Drop Tunneling,” Laser & Photonics Reviews, early online (2024).
[21] C. Qin, A. Alù, and Z. J. Wong*, “Pseudospin-Orbit Coupling for Chiral Light Routings in Gauge-Flux-Biased Coupled Microring Resonators,” ACS photonics 9, 586 (2022).
[20] S. Wang, C. Qin*, L. Zhao, H. Ye, S. Longhi*, P. Lu*, and B. Wang*, “Photonic Floquet Landau-Zener tunneling and temporal beam splitters,” Sci. Adv. 9, 1 (2023).
[19] H. Ye†, C. Qin†, S. Wang†, L. Zhao, W. Liu, B. Wang*, S. Longhi*, and P. Lu*, PNAS 120, e2300860120 (2023).
[18] S. Wang†, C. Qin†, W. Liu†, B. Wang*, F. Zhou, H. Ye, L. Zhao, J. Dong, X. Zhang, S. Longhi*, and P. Lu*, “High-order dynamic localization and tunable temporal cloaking in ac-electric-field driven synthetic lattices,” Nat. Commun. 13, 7653 (2022).
[17] Y. Peng†, C. Qin†, D. Zhao†, Y. Shen, X. Xu, M. Bao, H. Jia*, and X. Zhu*, “Experimental demonstration of anomalous Floquet topological insulator for sound,” Nat. Commun. 7, 13368 doi: 10.1038/ncomms13368 (2016).
[16] H. Ye†, S. Wang†, C. Qin*, L. Zhao, X. Hu, C. Liu, B. Wang, and P. Lu, Laser & Photonics Reviews 22, 16 (2023). (唯一通讯)
[15] X. Hu†, S. Wang†, C. Qin*, C. Liu, L. Zhao, Y. Li, H. Ye, W. Liu, S. Longhi*, B. Wang*, and P. Lu*, “Observing the collapse of super-Bloch oscillations in strong-driving photonic temporal lattices”, Advanced Photonics, under review (2024).
[14] H. Chen†, N. Yang†, C. Qin†, W. Li, B. Wang*, T. Han, C. Zhang*, W. Liu, K. Wang, H. Long, X. Zhang, and P. Lu*, “Real-time observation of frequency Bloch oscillations with fibre loop modulation,” Light Sci. Appl. 10, 48 (2021).
[13] C. Qin, B. Wang, Z. J. Wong, S. Longhi, and P. Lu, “Discrete diffraction and Bloch oscillations in non-Hermitian frequency lattices induced by complex photonic gauge fields,” Phys. Rev. B, 101, 064303 (2020).
[12] C. Qin, Y. Peng, Y. Li, X. Zhu, B. Wang, C. Qiu, and P. Lu, “Spectrum Manipulation for Sound with Effective Gauge Fields in Cascading Temporally Modulated Waveguides,” Phys. Rev. Appl. 11, 064012 (2019).
[11] C. Qin, L. Yuan, B. Wang, S. Fan, and P. Lu, “Effective electric-field force for a photon in a synthetic frequency lattice created in a waveguide modulator,” Phys. Rev. A 26, 063838 (2018).
[10] C. Qin, Q. Liu, B. Wang, and P. Lu, “Photonic Weyl phase transition in dynamically modulated brick-wall waveguide arrays,” Opt. Express, 26, 20929-20943 (2018).
[9] C. Qin, B. Wang, and P. Lu, “Frequency diffraction management through arbitrary engineering of photonic band structures,” Opt. Express, 26, 25721-25735 (2018).
[8] C. Qin, B. Wang, H. Long, K. Wang, and P. Lu, “Nonreciprocal Phase Shift and Mode Modulation in Dynamic Graphene Waveguides,” Journal of Lightwave Technology, 34, 3877-3883 (2016).
[7] C. Qin, B. Wang, H. Long, K. Wang, and P. Lu, “Bloch mode engineering in graphene modulated periodic waveguides and cavities,” J. Opt. Soc. Am. B, 32, 1748-1753 (2015).
[6] C. Qin, B. Wang, H. Huang, H. Long, K. Wang, and P. Lu, “Low-loss plasmonic supermodes in graphene multilayers,” Opt. Express, 22, 25324-25332 (2014).
[5] Lu Ding†, C. Qin†, F. Zhou, L. Yang, W. Li, F. Luo, J. Dong, B. Wang, and P. Lu, “Efficient Spectrum Reshaping with Photonic Gauge Potentials in Resonantly Modulated Fiber-loop Circuits,” Phys. Rev. Appl. 12, 024027 (2019).
[4] Q. Liu†, C. Qin†, B. Wang, and P. Lu, “Scattering singularities of optical waveguides under complex modulation,” Phys. Rev. A, 101, 033818 (2020).
[3] Z. Liu, C. Qin*, L. Zheng, S. Ren, B. Wang* and P. Lu*, “Frequency manipulation of topological surface states through Weyl phase transitions,” Opt. Lett., 46, 5719-5722 (2021).
[2] W. Li, C. Qin*, T. Han, H. Chen, B. Wang*, and P. Lu*, “Bloch oscillations in photonic spectral lattices through phase-mismatched four-wave mixing,” Opt. Lett., 44, 5430-5433 (2019).
[1] Q. Liu, S. Li, B. Wang, S. Ke, C. Qin, K. Wang, W. Liu, D. Gao, P. Berini, and P. Lu, “Efficient Mode Transfer on a Silicon Chip by Encircling Moving Exceptional Points,” Phys. Rev. Lett. 124, 153903 (2020).
讲授课程:大学物理、创新物理实验(近代物理实验)