报告人:苑秋月(克莱姆大学)
邀请人:邹猛
报告时间:2024年1月28日(星期日)10:00-12:00
报告地点:东三十二楼115室
报告题目:Lifelong Learning for Gene Regulation Modeling from Single-Cell Multiome Data
报告摘要:We present LINGER (LIfelong neural Network for GEne Regulation), a novel neural network-based method to infer gene regulatory networks (GRNs) from single-cell multiome data with paired gene expression and chromatin accessibility data from the same cell. LINGER incorporates both 1) atlas-scale external bulk data across diverse cellular contexts and 2) the knowledge of transcription factor (TF) motif matching to cis-regulatory elements as a manifold regularization to address the challenge of limited data and extensive parameter space in GRN inference. Our results demonstrate that LINGER achieves 4-7 fold relative increase in accuracy over existing methods. LINGER reveals a complex regulatory landscape of genome-wide association studies, enabling enhanced interpretation of disease-associated variants and genes. Additionally, following the GRN inference from a reference sc-multiome data, LINGER allows for the estimation of TF activity solely from bulk or single-cell gene expression data, leveraging the abundance of available gene expression data to identify driver regulators from case-control studies.
报告人简介:苑秋月,克莱姆森大学博士后研究员, 研究方向为数据科学、基因调控网络、精准医学、人工智能。在国际期刊发表9篇论文,期刊包括Genome Biology,Cell Reports Medicine,Nature Communications,另有一篇Nature Biotechnology (Under revision following positive peer reviews)。