报告人:张城(清华大学)
邀请人:黄山林
报告时间:2023年10月26日(星期四)10:00-12:00
报告地点:腾讯会议:170 443 071
报告题目:Sharp Local L^p estimates for the Hermite eigenfunctions
报告摘要:We investigate the concentration of eigenfunctions for the Hermite operator $-\Delta+|x|^2$ in $\mathbb{R}^n$ by establishing new $L^p$ bounds over compact sets. Compared to Koch-Tataru's global estimates, these new estimates demonstrate local improvements for a certain range of $p$. The sharpness of these local estimates can be verified by examples with various types of concentrations. Moreover, we prove that the sharp $L^p$ bounds of the Hermite eigenfunctions over fixed compact sets coincide with Sogge's $L^p$ bounds for the Laplace eigenfunctions on compact manifolds, up to a scaling factor $\lambda^{-\frac12}$. This phenomenon suggests that the Hermite eigenfunctions locally resemble the rescaled Laplace eigenfunctions. These results strengthen the local estimates by Thangavelu and Koch-Tataru.
报告人简介:张城博士,清华大学数学中心助理教授。2014年本科毕业于浙江大学,2019年博士毕业于美国约翰霍普金斯大学。研究方向是调和分析及其应用,主要研究流形上的特征值与特征函数问题,获得国家海外高层次人才项目和国家自然科学基金委面上项目资助。