学术活动
首页  -  科学研究  -  学术活动  -  正文
【学术报告】2023年5月29日梅茗教授举办学术讲座

时间:2023-05-25

报告人:梅茗(麦吉尔大学)

邀请人:李东方

报告时间:2023年5月29日(星期一)10:00-12:00

报告地点:腾讯会议:216 582 811

报告题目:Threshold convergence results for a nonlocal time-delayed diffusion equation

报告摘要:In this talk we are concerned with the asymptotic behavior for nonlocal dispersion Nicholson blowflies equation in the n-dimensional space. By the method of Fourier transform, we first derive the decay estimates for the fundamental solutions with time-delay. Then, we obtain the threshold results with optimal convergence rates for the original solution to the constant equilibrium. Namely, when the ration of birth rate and death rate satisfies 0 < p/d < 1, the solution u(t, x) globally converges to the equilibrium 0 in the time-exponential form; when p/d = 1, the solution u(t, x) globally converges to 0 in the time-algebraical form; when 1 < p/d ≤ e, the solution u(t, x) globally converges to the non-trivial state u+ in the time-exponential form; and when e < p/d < e2, it locally converges to u+ in the time-exponential form.

报告人简介:梅茗,加拿大McGill大学兼职教授,Champlain学院终身教授,博士生导师,意大利L’Aquila大学客座教授。2015年被聘为吉林省长白山学者讲座教授,东北师范大学“东师学者”讲座教授。主要从事流体力学中偏微分方程和生物数学中带时滞反应扩散方程的研究,在ARMA, SIAM, JDE, Commun. PDEs等刊物发表论文90多篇。其中有关带时滞的反应扩散方程行波解稳定性的多篇系列性研究论文一直是ESI的高被引论文。梅茗教授是4家SCI国际数学杂志的编委,并一直承担加拿大自然科学基金项目,魁北克省自然科学基金项目,及魁北克省大专院校国际局的基金项目。

地址:中国·湖北省·武汉市珞喻路1037号 18luck新利电竞 数学与统计学院(东三十一楼)
邮政编码:430074     电话\传真:86-027-87543231 E-mail:mathhust@mail.hust.edu.cn
Copyright 2021 ◎ 18luck新利电竞 数学与统计学院