报告人:陈鹏 (中山大学)
邀请人:郑权
报告时间:2023年4月14日(星期五)10:30-11:30
报告地点:科技楼南611室
报告题目:The Garnett--Jones Theorem on BMO spaces associated with operators and applications
报告摘要:Let $X$ be a metric space with doubling measure, and $L$ be a nonnegative self-adjoint operator on $L^2(X)$ whose heat kernel satisfies the Gaussian upper bound.In this talk, we give a construction that for every $ f$ in the $ {\rm BMO}_L(X)$ space associated with the operator $L$, we have comparable upper and lower bounds for the distance$${\rm dist} (f, L^{\infty}):= \inf_{g\in L^{\infty}} \|f -g\|_{{\rm BMO}_L(X)}$$ by the constant in the John and Nirenberg inequality for the space ${\rm BMO}_L(X)$ space:$$\sup_B { \mu\{ x\in B: |f(x)-e^{-{r_B^2}L}f(x)|>\lambda\}\over \mu(B)}\leq e^{-\lambda/\varepsilon}\ \ \ \ {\rm for\ large\ } \lambda,$$ which extends the theorem of Garnett and John \cite{GJ1} for the classical BMO space of John and Nirenberg.We also give a construction that a compact supported $\BMO_L(X)$ function can be decomposed as the summation of a $L^\infty$-function and the integral of the heat kernel with respect to a finite Carleson measure. Random dyadic lattice method is used in both of the two kinds of constructions.
报告人简介:陈鹏,中山大学数学学院副教授;主要从事调和分析的研究;主要学术成果发表在《Math. Ann.》、《Adv. Math.》、《J. Math. Pures Appl.》、《Int. Math. Res. Not. IMRN》、《Trans. Amer. Math. Soc.》、《Math. Z.》、《J. Funct. Anal.》等国际重要数学期刊上;2018年获得教育部自然科学奖一等奖(第3完成人);先后主持国家自然科学基金面上项目、青年基金项目和广东省自然科学基金面上项目。