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Introduction



Brownian Motion and Heat Equation
Probability Space: (Ω,F ,P)
Brownian Motion (Wiener Process) in Rd : a continuous
stochastic process Bt = B(t ,ω), t ≥ 0,ω ∈Ω, with B0 = 0, where
Bt = (B1

t ,B
2
t , · · · ,Bd

t ). For F ⊂ Rd ,

P{Bt ∈ F}=
∫

F
p(t ,y)dy ,

and p(t ,x) is the probability density function given by

p(t ,x) = (2πt)−d/2 exp{−|x |2/2t}, x ∈ Rd , t > 0.

Let Xt = x +Bt and φ ∈ Cb(Rd). Define the conditional
expectation

u(t ,x) = E{φ(Xt)|X0 = x}= E{φ(x +Bt)}
=

∫
Rd

φ(x +y)p(t ,y)dy =
∫

Rd
p(t ,x −y)φ(y)dy .

which satisfies the heat equation:
∂u
∂ t

=
1
2
△u, u(0,x) = φ(x).



Ornstein-Uhlenbeck Process
A = [aij ]d×d ,σ = [σij ]d×d : d ×d- matrices.

SDE in Rd : dXt = AXt dt +σd Bt , X0 = x ∈ Rd ,

Xt = x +
∫ t

0
AXs ds+σBt .

Xt = etAx +Yt , Yt = σ
∫ t

0
e(t−s)AdBs.

u(t ,x) = E{φ(Xt)|X0 = x}= Eφ(etAx +Yt).

which satisfies the Kolmogorov Equation:
∂u
∂ t

=
1
2

Tr [RD2u]+ (Ax ,Du), u(0,x) = φ(x),

Du = (
∂u
∂x1

, · · · , ∂u
∂xd

), Tr [RD2u] =
d

∑
i ,j

rij
∂ 2u

∂xi∂xj
,

(Ax ,Du) =
d

∑
i ,j=1

aijxj
∂u
∂xi

, R = σσ∗= [rij ]d×d .



Stochastic Heat Equation

∂u
∂ t

=△u+ ∂tW (t ,x), t > 0,

u(0,x) = g(x), x ∈ D ⊂ Rd ,
u(t ,x) = 0, x ∈ ∂D ,

(1)

W (t ,x) =
∞

∑
i=1

σkek (x)Bk
t ,

∞

∑
k=1

σ2
k < ∞,

where {ek} is the orthonormal set of eigenfunctions of (−△)
with eigenvalues {λk}, and {Bk

t } is iid Brownian motions.
Formal Solution:

u(t ,x) =
∞

∑
k=1

uk
t ek (x), uk

t = (u(t , ·),ek ) =
∫

D
u(t ,x)ek (x)dx ,

duk
t =−λkuk

t dt +σkdBk
t , uk

0 = gk =
∫

D
g(x)ek (x)dx .

uk
t = e−λk t gk +σk

∫ t

0
exp{−λk (t −s)}dBk

s .



By direct verification, it can be shown that

u ∈ L2((0,T )×Ω;H1
0 )

∩
L2(Ω;C([0,T ],H),

and it satisfies∫
D

u(t ,x)ϕ(x)dx =
∫

D
g(x)ϕ(x)dx +

∫ t

0

∫
D
△u(s,x)ϕ(x)dx

+
∫

D
ϕ(x)dW (t ,x)dx ,

for each ϕ ∈ H1
0 , where H = L2(D) and H1

0 = H1
0 (D).



Stochastic Reaction-Diffusion Equation

Initial-boundary value problem

∂u
∂ t

=△u+ f (u,x)+∂tW (t ,x), t > 0,

u(0,x) = g(x), x ∈ D ⊂ Rd ,
u(t ,x) = 0, x ∈ ∂D ,

(2)

where W (t ,x), for x ∈ Rd , t ≥ 0, be a continuous Wiener
random field defined in (Ω,F ,P) with mean EW (t ,x) = 0 and
covariance function r(x ,y) defined by
EW (t ,x)W (s,y) = (t ∧s)r(x ,y), x ,y ∈ Rd , where
(t ∧s) = min(t ,s) for 0 ≤ t ,s ≤ T .

Fact: Suppose that f : R×D → R is Lip-continuous and r(x ,y)
is bounded and continuous for x ,y ∈ D . Then, for each
g ∈ H, T > 0, the problem (2) has a unique solution
u ∈ L2((0,T )×Ω;H1

0 )
∩

L2(Ω;C([0,T ];H)).



Parabolic Itô Equation
Itô Equation in Hilbert Space H (in distributional sense)

dut = [Aut +F (ut)]dt + d Wt , 0 < t < T ,
u0 = v ∈ H,

(3)

where A : H1 → H−1 with domain H1
0 ∩H2, F : H → H is

Lip-continuous and Wt is a H−valued Wiener process with a
trace-class covariance operator R on H.

Fact: If A is strongly elliptic and F is Lip.-continuous, then
Eq.(3) has a unique solution
u ∈ L2((0,T )×Ω;H1

0 )
∩

L2(Ω;C([0,T ];H)), which satisfies∫
D

u(t ,x)ϕ(x)dx =
∫

D
g(x)ϕ(x)dx +

∫ t

0

∫
D

Au(s,x)ϕ(x)dx

+
∫ t

0

∫
D

F (u(s,x))ϕ(x)dx +
∫

D
ϕ(x)W (t ,x)dx ,

for each ϕ ∈ H1
0 .



Kolmogorov Equation for SPDE – Example

∂u
∂ t

=△u+ ∂tW n(t ,x), 0 < x < π, t > 0,

u(0,x) = un
0(x), u(t ,0) = u(t ,π) = 0,

with W n
t =

n

∑
k=1

σkBk
t ek and un

0 =
n

∑
k=1

gkek , where

ek (x) =
√

2sinkx is the eigenfunction of (−△) with eigenvalue
λk = k2 for k = 1,2, · · · ,n. There exists a finite-dimensional

solution: u(t , ·) =
n

∑
k=1

uk
t ek (x), where uk

t is an O-U process

given by

uk
t = e−k2t gk +σk

∫ t

0
e−k2(t−s)d Bk

s , k = 1,2, · · · ,n.

As before, for F ∈ C2
b(H) with F (vn) = f (v1,v2, · · · ,vn), define

Φ(t ,vn) = E{F (ut)|u0 = vn}.



Kolmogorov Equation for SPDE – Example

∂Φ
∂ t

=
1
2

n

∑
i

σ2
i

∂ 2Φ

∂v2
i
−

n

∑
k=1

k2vk
∂Φ
∂vk

,

Φ(0,vn) = φ(vn).

Q: What happens as n → ∞ ?
Formally, as n → ∞, the above yields

∂Φ
∂ t

=
1
2

Tr [RD2Φ]+(△v ,DΦ),

Φ(0,v) = φ(v),
(4)

where DΦ,D2Φ, · · · denote the Fréchet derivatives of Φ in H.
Remarks:

(1)The above equation is defined only when v ∈ D(△)⊂ H!

(2) Clearly Eq.(4) has no classical solutions.

(3) In what sense the function Φ(t ,v) = E{F (ut)|u0 = v)} is a
solution of Eq.(4)?



Kolmogorov Equation for Parabolic Itô Equation

dut = [Aut +F (ut)]dt + d Wt , 0 < t < T ,
u0 = v ∈ H,

where A : H1 → H−1 with domain H1
0 ∩H2, F : H → H is

continuous and Wt is a H−valued Wiener process with a
trace-class covariance operator R on H.

Let φ : H → R be a smooth function. Then

Φt(v) = E{φ(ut)|u0 = v}
satisfies the Kolmogorov equation:

∂
∂ t

Φt(v) = L Φt(v)+(F ,DΦt(v)), v ∈ D(A), t > 0,

Φ0(v) = φ(v),
(5)

where L will be called the O-U (Ornstein-Uhlenbeck) operator

defined by LΦ(v) =
1
2

Tr [RD2Φ(v)]+ ⟨Av ,DΦ(v)⟩, and

DΦ, D2Φ, · · · denote the derivatives of Φ in H.



Stochastic Control Problem

dut = [Aut +F (ut ,ηt)]dt + d Wt , 0 < t < T ,
u0 = v ∈ H,

where F (·,ηt) depends on the control ηt in a bounded convex
set KT of admissible controls.
The problem: Find η⋆ ∈ KT which minimizes the cost function

J(t ,v ,η) = E{
∫ T

t
e−αt B(us, ηs)ds+φ(uT )|ut = v },

where B : H ×KT → R+ is the running cost with the discount
rate α > 0 and φ : H → R+ is the terminal cost.



Hamilton-Jacobi-Bellman Equation

Define the value function: Vt(u) = infη∈KT J(t ,u,η).
By the dynamic programming principle, the function Φt = VT−t
satisfies the H-J-B equation:

∂
∂ t

Φt(u) = (L −α)Φt(u)+F (u,DΦt(u)), t > 0,

Φ0(u) = φ(u),

where

F (u,DΦ) = inf
η∈KT

{(F (u,η),DΦ)+B (u,η)}.



L2− Gauss- Sobolev Spaces



Theory in L2−Sobolev Spaces

What are needed for L2- theory?

(R.1) Choose a suitable measure µ for integration.

(R.2) Workable differential and integral calculus, such as
integration by parts formula.

(R.3) Suitable function spaces for solutions.



Linear Itô Equation

H: real separable Hilbert space with inner product (·, ·) and
norm | · |.
V ⊂ H: Hilbert subspace with norm ∥ · ∥.
V ′: the dual space of V with the duality pairing ⟨·, ·⟩.
( Assume that the inclusions V ⊂ H ∼= H ′ ⊂ V ′ are dense and
continuous.)
A : V → V ′ : continuous closed linear operator with domain
D(A) dense in H,
Wt : H-valued Wiener process with trace-class covariance
operator R.
Consider the linear stochastic equation in a distributional sense:

dut = Aut dt +d Wt , t ≥ 0,

u0 = h ∈ H.
(6)



Assume Conditions (A):

(A.1) Let A : V → V ′ be a self-adjoint, coercive operator such
that ⟨−Av ,v⟩ ≥ β∥v∥2, for some β > 0, and (−A) has
eigenvalues 0 < α1 ≤ α2 ≤ ·· · ≤ αn ≤ ·· · , counting the
finite multiplicity, with αn ↑ ∞ as n → ∞. The corresponding
orthonormal set of eigenfunctions {en} is complete.

(A.2) The resolvent operator Rλ (A) and covariance operator R
commute.

(A.3) The covariance operator R : H → H is a self-adjoint
operator with a finite trace such that R1/2H ⊂ V .

Then the following hold:
(1) A generates a contraction semigroup {etA, t ≥ 0} on H.
(2) The solution ut is a Gaussian (diffusion ) process in H with
the transition probability µv

t (B) = P(ut ∈ B|u0 = v), for v ∈ H
and B ∈ B(H).



Invariant Measure
Transition Operator: For any Ψ ∈ Cb(H), define

PtΨ(v) =
∫

H Ψ(η)µv
t (dη)

Invariant measure µ :∫
H

PtΨ(η)µ(dη) =
∫

H
Ψ(η)µ(dη), ∀Ψ ∈ Cb(H), t ≥ 0.

Lemma 1.1 Under Conditions (A), we have µv
t ⇀ µ (weak

convergence) in the sense that

lim
t→∞

PtΨ(v) = lim
t→∞

∫
H
Ψ(η)µv

t (dη) =
∫

H
Ψ(η)µ(dη),

for all v ∈ H,Ψ ∈ Cb(H). Moreover µ is the unique invariant
measure of the stochastic equation (6) , which is a centered
Gaussian measure on H supported in V with covariance

operator Γ =
1
2
(−A)−1 R. �



Hermite Polynormials
Let H = L2(H,µ) with norm ∥|Φ∥|= {

∫
H |Φ(v)|2µ(dv)}1/2, and

inner product [·, ·] given by

[Θ,Φ] =
∫

H
Θ(v)Φ(v)µ(dv), forΘ,Φ ∈ H .

Let n = (n1,n2, · · · ,nk , · · ·), where nk ∈ Z+, the set of

nonnegative integers, and let Z = {n : n = |n|=
∞

∑
k=1

nk < ∞}.

Let hm(r) be the one-dimensional Hermite polynomial of degree
m. For v ∈ H, define a Hermite (polynomial) functional of
degree n by

Hn(v) =
∞

∏
k=1

hnk [ℓk (v)],

where we set ℓk (v) = (v ,Γ−1/2ek ) and Γ−1/2 denotes a
pseudo-inverse.
For a smooth functional Φ on H, let DΦ and D2Φ denote the
Fréchet derivatives of the first and second orders, respectively.



L2
µ -Gauss-Sobolev Spaces

Let L be the O-U operator

LΦ(v) =
1
2

Tr [RD2Φ(v)]+ ⟨Av ,DΦ(v)⟩ (7)

defined for a polynomial functional Φ with v ∈ D(A).

Theorem 1.2 The set of all Hermite functionals {Hn : n ∈ Z}
forms a complete orthonormal system in H . Moreover we have

L Hn(v) =−λnHn(v), ∀n ∈ Z, where λn = n ·α =
∞

∑
k=1

nk αk . �

Let Φn = [Φ,Hn]. For any positive integer m, define

∥|Φ∥|m = ∥|(I −L )m/2Φ∥|= {∑
n
(1+λn)

m|Φn|2}1/2, (8)

with I being the identity operator in H = H0. Let Hm denote
the Gauss-Sobolev space of order m defined by

Hm = {Φ ∈ H : ∥|Φ∥|m < ∞}.



Integration by Parts

Remarks:
(1) In particular, for m ≥ 1, we have Hm ⊂ H ⊂ H−m.

(2) The norm ∥|Φ∥|1 in H1 is equivalent to the norm

∥Φ∥1
R := {∥|Φ∥|2 +∥|DRΦ∥|2}

1
2 ,

where DRΦ= R
1
2 DΦ or the derivative in the direction of

{R
1
2 H}.

Lemma 1.3 (Integration by Parts) For ϕ ,ψ ∈ H1 and
g ∈ (Γ1/2H), the following formula holds∫

H
(DRϕ ,g)ψdµ =−

∫
H
(DRψ,g)ϕdµ +

∫
H
(v ,Γ−1/2g)ϕ ψ dµ.



Recall, for a smooth function Φ, the O-U operator

LΦ(v) =
1
2

Tr [RD2Φ(v)]+ ⟨Av ,DΦ(v)⟩.

Let PN be a projection operator in H onto its subspace SN
spanned by the Hermite polynomial functionals of degree N.
Define LN = PNA . Then the following theorem holds.

Theorem 1.4 (Integration by Parts) The sequence {LN}
converges strongly to a linear symmetric operator
L :H2 →H , so that, for Φ,Ψ ∈H2, the following identity holds:∫

H
[LΦ,Ψ]dµ =

∫
H
[Φ,LΨ]dµ =−1

2

∫
H
[DRΦ,DRΨ]dµ. (9)

Moreover L has a self-adjoint extension, still denoted by L
with domain D(L )⊃ H2. 2



Solutions of Parabolic Equations



Linear Parabolic Equations

Let F : H → H,G : H → R be bounded and continuous. For
Q ∈ L2((0,T );H ) and ϕ ∈ H , consider the Cauchy problem:

∂
∂ t

Φt(v) = L Φt(v)+(F (v),DRΦt(v))+G (v)Φt(v)

+Qt(v), µ −a.e. v ∈ H, t ∈ (0,T ),
Φ0(v) = ϕ(v),

(10)

Strong Solution: A continuous function Φ : [0,T ]×H → R is
said to be a strong solution of Eq.(10) if
Φ ∈ C([0,T ];H )∩L2((0,T );H1) and it satisfies

[Φt ,φ] = [ϕ ,φ]+
∫ t

0 ≪ LΦs,φ ≫ ds+
∫ t

0[(F ,DRΦs),φ]ds
+
∫ t

0 [G (v)Φs(v),φ]ds+
∫ t

0[Qs,φ]ds,
(11)

for all φ ∈ H1, a.e. t ∈ [0,T ].



Energy Estimates

Theorem 2.1 Assume that F : H → H, G : H → R are bounded
and continuous. Then the following inequalities hold

(1) For any Φ,Ψ ∈ H1, there exist constants α,β > 0 and
γ ∈ R, such that

| ≪ LΦ ,Ψ≫ | ≤ α∥|Φ∥|1∥|Ψ∥|1,

≪ LΦ ,Φ≫≤ −β∥|Φ∥|21 + γ ∥|Φ∥|2.

(2) There exists a positive constant C, depending on F ,G and
T , such that, for a smooth function ut(v), t ∈ [0,T ],v ∈ H ,

sup
0≤t≤T

∥|ut∥|2 +
∫ T

0
∥|us∥|21 ds+

∫ T

0
∥|∂sus∥|2−1 ds

≤ C{∥|u0∥|2 +
∫ T

0
∥|Qs∥|2 ds}. 2



Existence Theorem

Theorem 2.2 Suppose that F : H → H, G : H → R are bounded
and continuous. Then, for each φ ∈ H and Q ∈ L2((0,T );H ),
the Cauchy problem

∂
∂ t

Φt(v) = L Φt(v)+(F (v),DRΦt(v))+G (v)Φt(v)

+Qt(v), µ −a.e. v ∈ H, t ∈ (0,T ),
Φ0(v) = φ(v)

has a unique strong solution Φ ∈ C([0,T ];H )∩L2((0,T );H1).

Lemma 2.3 The embedding H1(H,µ) ↪→ H = L2(H,µ) is
compact. (Da Prato, Malliavin, Nualart, 2002) 2



Idea of Proof

1. Galerkin Approximation: Show that the finite-dimensional
problem

∂
∂ t

Φn
t (v) = LnΦ

n
t (v)+(Fn(v),Dn

RΦ
n
t (v))+Gn(v)Φn

t (v)

+Qn
t (v), v ∈ H, t ∈ (0,T ),

Φn
0(v) = φn(v)

has a unique strong solution
Φn ∈ C([0,T ];H )∩L2((0,T );H ).

2. By the energy estimates and the compact embedding
Lemma, show that the sequences {Φn} and {Φ̇n} are
bounded in L2((0,T );H1) and L2((0,T );H−1) ’
respectively. So there exists a function Φ ∈ L2((0,T );H1),
with Φ̇ = ∂tΦ ∈ L2((0,T );H−1), and a subsequence {Φnk}
such that Φnk ⇀ Φ ∈ L2((0,T );H1) and
Φ̇nk ⇀ Φ̇ ∈ L2((0,T );H−1).



3. Show that the weak limit Φ is a strong solution.
For ψ ∈ H1, Φnk , as a strong solution, satisfies

[Φnk
t ,ψ] = [φnk ,ψ]+

∫ t
0 ≪ LnkΦ

nk
s ,ψ ≫ ds

+
∫ t

0[(Fnk ,DRΦ
nk
s ),ψ]ds+

∫ t
0[Q

nk
s ,ψ]ds,

which will converge, as nk → ∞, to

[Φt ,ψ] = [φ ,ψ]+
∫ t

0 ≪ LΦs,ψ ≫ ds
+
∫ t

0[(F ,DRΦs),ψ]ds+
∫ t

0[Qs,ψ]ds,

or the weak limit Φ is a strong solution.

4. The uniqueness follows from the energy inequality.



Nonlinear Parabolic Equations



Fundamental Solution

For Φ ∈ H , define

PtΦ(v) = E{Φ(ut)|u0 = v}. (dut = Autdt +dWt)

RtΦ= e−α tPtΦ, for α > 0.

Theorem 3.1 Under Conditions (A), the transition operator Rt
is defined on H for all t ≥ 0 and {Rt : t ≥ 0} forms a strongly
continuous semigroup of linear operators on H with the
infinitesimal generator Lα

.
= (L −αI) in H2. Moreover, for

ϕ ∈ H , Q ∈ L2((0,T );H ), the function Φt(v) defined by

Φt(v) = Rtϕ(v)+
∫ t

0
(Rt−sQs)(v)ds

is the strong solution of the Cauchy problem

∂
∂ t

Φt = Lα Φt(v)+Qt , Φ0 = ϕ , t ∈ (0,T ). (12)



Basic Estimates

Lemma 3.2 Let Φ ∈ Hm−1 and Q ∈ L2((0,T );Hm−1) for any
integer m ≥ 0. The following inequalities hold:

(1) ∥|RtΦ∥|m ≤ e−αt ∥|Φ∥|m,

(2) ∥|
∫ t

0
[Rt−sΦ]ds∥|2m ≤ t

2α1
∥|Φ∥|2m−1,

(3) ∥|
∫ t

0
[Rt−sQs ds∥|2m ≤ 1

2α1

∫ t

0
∥|Qs∥|2m−1, for t ∈ [0,T ],

where α1 = min{α,1}.



Nonlinear Parabolic Equation

∂
∂ t

Ψt = Lα Ψt +B(Ψt)+Qt , t > 0,

Ψ0 = Θ.
(13)

Assume that B : H1 → H is bounded and continuous such that
the following conditions hold:

(B1) There exists a positive function ρ1 on H with ∥|ρ1∥|< ∞
such that

∥|B(Φ)∥|2 ≤ ρ1 {1+∥|Φ∥|2 +∥|DRΦ∥|2 }, (DRΦ= R1/2DΦ)

(B2) There exists a positive function ρ2 on H with ∥|ρ2∥|< ∞
such that

∥|B(Φ)−B(Φ′)∥|2 ≤ ρ2 {∥|Φ−Φ′∥|2 +∥|DR(Φ−Φ′)∥|2 }.



Existence Theorem

Theorem 3.3 Suppose that Lα is given as before, and the
conditions (C1) and (C2) hold true. Then, for Θ ∈ H and
Q ∈ L2((0,T );H ), the Cauchy problem (13) has a unique
strong solution Ψ ∈ C([0,T ];H )∩L2((0,T );H1), for any T > 0,
so that the following equation holds for every t ∈ [0,T ], ϕ ∈ H1:

[Ψt ,ϕ ] = [Θ,ϕ ]+
∫ t

0
⟨⟨Lαψs,Φ⟩⟩ds+

∫ t

0
[B(Ψs),ϕ ]ds+

∫ t

0
[Qs,Φ]ds.

Moreover the solution satisfies the inequality:

sup
0≤t≤T

∥|Ψt∥|2 +
∫ T

0
∥|Ψs∥|21 ds

≤ CT{1+∥|Φ∥|2 +
∫ T

0
∥|Qs∥|2 ds},

for some constant CT > 0, depending on T and B.



Idea of Proof

Introduce the Banach space XT := C([0,T ];H )∩ L2((0,T );H1)
with the norm defined by

∥|Ψ∥|2T = sup
0≤t≤T

∥|Ψt∥|2 +
∫ T

0
∥|Ψs∥|21 ds.

Define the map: F· : XT → XT by

Ft(Ψ) := [RtΦ]+
∫ t

0
Rt−sBs(Ψs)ds+

∫ t

0
Rt−sQsds.

Show that the map F· is a contraction map in XT with respect
to an equivalent norm

∥|Ψ∥|λ ,T = sup
0≤t≤T

∥|Ψt∥|2 + λ
∫ T

0
∥|Ψs∥|21ds,

for some λ > 1.



Stationary solutions



Linear Parabolic Equations

∂
∂ t

Φt = Lα Φt +Qt , Φ0 =Θ. (14)

Theorem 4.1 Let Qt ∈ H be bounded and continuous in
t ∈ [0,∞) such that the following condition holds in H

lim
t→∞

Qt = Q. (15)

Then under conditions (A.1)–(A.3), for any Θ ∈ H , there exists
the limit

lim
t→∞

Φt = lim
t→∞

{RtΘ+
∫ t

0
Rt−sQs ds}=Ψ, (16)

and Ψ ∈ H2 satisfies the elliptic equation:

Lα Ψ = −Q. � (17)



Nonlinear Parabolic Equations

d
dt

Φt = Lα Φt +B(Φt)+Qt , t > 0,

Φ0 = Θ.
(18)

(C.1) Let B(·) : H1 → H a continuous mapping with B(0) = 0.
Suppose there exist positive constants b1,b2, such that
b2 <

√
b1 < α and, for any ϕ ,ψ ∈ H1,

∥|B(ϕ)−B(ψ)∥|2 ≤ b1∥|ϕ −ψ∥|2 +b2 ∥|R
1
2 D(ϕ −ψ)∥|.

(C.2) The map B can be extended to be a continuous operator
from H into H−1 such that
∥|B(ϕ)−B(ψ)∥|−1 ≤ κ ∥|ϕ −ψ∥|, for some constant κ > 0,
and for any ϕ ,ψ ∈ H .

(C.3) Qt is a bounded continuous H -valued function on [0,∞)
such that

lim
t→∞

Qt = Q.



Theorem 4.2 Suppose that conditions (C.1)–(C.3) hold. Then,
for any t > 0 and Θ ∈ H , the solution Ψt of the Cauchy problem
(18) converges to the limit:

lim
t→∞

Ψt = Ψ, (19)

and Ψ is the mild solution of (18) which satisfies the following
equation:

Ψ = −L −1
α [B(Ψ)+ Q], (20)

where L −1
α B(·) .

= L −1
α ◦B(·) is a bounded operator on H .

Moreover the solution of equation (20) is unique if, in condition
(B.2), κ <

√
αα1 with α1 = min{α,1}. �



General Remarks:

(1) For parabolic equations in infinite dimensions, there is no
canonical reference measure. The measure to be chosen
must be explicit and compatible with the elliptic operator in
the equation.

(2) Unlike Sobolev spaces in Rn, so far, very little is known
about the properties of Gauss-Sobolev spaces. For
instance, we know the embedding H1 ⊂ H is compact.
But H2 ⊂ H1 is not.

(3) There exist no general Sobolev inequalities as in finite
dimension. In particular it is not known how to relate a
solution in a Sobolev space to one in the space of
continuous functions.
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