欢迎访问智能制造与数据科学实验室网站 

中文| English
当前位置: 首页 > 研究团队 > 教师 > 正文

卢仁智

【来源: | 发布日期:2019-08-02 】

姓名:卢仁智

职称:讲师

邮箱:lofky7@gmail.com

个人主页:http://imds.aia.hust.edu.cn


教育经历

2010.09 – 2014.06于武汉科技大学获得本科学位

2014.09 – 2019.06于韩国Hanyang University硕博连读获得博士学位

2019年7月加入18luck新利电竞 ,人工智能与自动化学院,智能制造与数据科学实验室


研究方向

Artificial Intelligence(人工智能)

(focus on learning algorithm and its application in smart grid and smart manufacturing)

1. Reinforcement Learning/Deep Reinforcement Learning for Home/Commercial/Industrial Energy Management

2. Deep Learning for Load and Price Forecasting

3. Multi-Agent Reinforcement Learning for Cooperative/Competitive/Mixed Cooperative-Competitive System

Smart Grid/Power System(智能电网)

(focus on optimal use of energy resources, analysis and optimization of energy processes)

1. Demand Response, Energy Management

2. Load Forecasting, Price Forecasting

3. Design, Implementation and Evaluation of Power Systems

Smart Manufacturing/Industrial 4.0(智能制造)

(focus on systems design and implementation)

1. Cyber Physical System (CPS), Digital Twin (DT)

2. OPC Unified Architecture (OPC UA), AutomationML (AML), Administration Shell (AAS)


截止目前发表的论文

1.Lu R, Hong S H, Yu M. Demand Response for Home Energy Management using Reinforcement Learning and Artificial Neural Network. IEEE Transactions on Smart Grid, 2019. (影响因子: 10.486,中科院一区)

2.Lu R, Hong S H. Incentive-based demand response for smart grid with reinforcement learning and deep neural network. Applied Energy, 2019, 236: 937-949. (影响因子: 8.426,中科院一区)

3.Lu R, Hong S H, Zhang X. A Dynamic pricing demand response algorithm for smart grid: Reinforcement learning approach. Applied Energy, 2018, 220: 220-230. (影响因子: 8.426,中科院一区)

4.Yu M,Lu R, Hong S H. A real-time decision model for industrial load management in a smart grid. Applied Energy, 2016, 183: 1488-1497. (影响因子: 8.426,中科院一区)

5.Lu R, Hong S H, Zhang X, et al. A Perspective on Reinforcement Learning in Price-Based Demand Response for Smart Grid. 2017 International Conference on Computational Science and Computational Intelligence (CSCI). IEEE, 2017: 1822-1823.

6.Luo Z, Hong S H,Lu R, et al. OPC UA-Based Smart Manufacturing: System Architecture, Implementation, and Execution. Enterprise Systems (ES), 2017 5th International Conference on. IEEE, 2017: 281-286.

7.Ding Y, Hong S H,Lu R, et al. Experimental investigation of the packet loss rate of wireless industrial networks in real industrial environments. Information and Automation, 2015 IEEE International Conference on. IEEE, 2015: 1048-1053.


参与代表性项目

1.基于智能制造的工业IOT/CPS核心技术研究,中韩国际合作项目,2018/01 – 2020/12,300万

2.智能制造业工业物联网核心技术研究,中韩国际合作项目,2015/01 – 2017/12,60万

3.基于IOT/CPS的智能工厂能源管理系统,韩国政府项目,2016/03 – 2019/03,300万

4.CPC自动对中控制系统,武汉科技大学和武钢公司校企合作项目,2013/01 – 2014/05,50万


个人获得代表性奖励

中国驻韩国大使馆优秀国家公派留学生

韩国Hanyang University优秀博士毕业生

武汉科技大学优秀本科毕业生

在校期间,多次获得奖学金(中国国家公派、韩国政府BK等)和参加电子设计类竞赛(省、校一等奖)


学术兼职

2018- Member, IEEE Membership

2018- Member, IEEE Computational Intelligence Society Membership

2018- Member, IEEE Industrial Electronics Society Membership

2018- Member, IEEE Power & Energy Society Membership

2015- Reviewer, IEEE Transactions on Industrial Electronics

2015- Reviewer, Applied Energy

2016- Reviewer, IEEE Transactions on Smart Grid

2016- Reviewer, IEEE Transactions on Industrial Informatics

2018- Reviewer, IET Renewable Power Generation

2019- Reviewer, IEEE Transactions on Neural Networks and Learning Systems