研究成果

当前位置: 首页 > 冷原子分子精密测量 > 研究成果

研究成果

发表论文

        2023年:

1)Precision Magnetic Field Sensing with Dual Multi-Wave Atom Interferometer, Wen-Hua Yan, Xu-Dong Ren, Min-Kang Zhou*, and Zhong-Kun Hu, Sensor 23, 173 (2023).

2)Magnetic-field-sensitive multi-wave interference, Wen-Hua Yan, Xu-Dong Ren, Wen-Jie Xu*, Zhong-Kun Hu, and Min-Kang Zhou, Frontiers of Physics 18, 52306 (2023).

3)Ultrahigh-sensitivity Bragg atom gravimeter and its application in testing Lorentz violation, Tao Zhang, Le-Le Chen, Yu-Biao Shu, Wen-Jie Xu, Yuan Cheng, Qin Luo, Zhong-Kun Hu*, and Min-Kang Zhou*, PhysicalReview Applied 20, 014067 (2023).

4)Effect of atom diffusion on the efficiency of Bragg diffraction in atom interferometers, Yu-Kun Yang, Tao Zhang, Yuan Cheng, Xiao-Bing Deng, Min-Kang Zhou, Zhong-Kun Hu, Qin Luo*, and Le-Le Chen*, Optics Express 31(26), 43462-43476 (2023).

5)Characterizing the impact of the magnetic field in the frequency domain for a multiwave atom interferometer, Xu-Dong Ren, Wen-Hua Yan, Yu-Kun Yang, Xiao-Bing Deng, Wen-Jie Xu, Zhong-Kun Hu, and Min-Kang Zhou, Phys. Rev. A 108, 063309 (2023).

6)Magnetic-monopole-induced polarons in atomic superlattices, Xiang Gao, Ya-Fen Cai, Shao-Jun Li, Shou-Long Chen, Xue-Ting Fang, Qian-Ru Zhu, Lu-Shuai Cao*, Peter Schmelcher, and Zhong-Kun Hu*, Phys. Rev. A 107, 013312 (2023).

        2022年:

1)Manifold formation and crossings of ultracold lattice spinor atoms in the intermediate interaction regime, Xue-Ting Fang, Zheng-Qi Dai, Di Xiang, Shou-Long Chen, Shao-Jun Li, Xiang Gao, Qian-Ru Zhu, Xing Deng, Lu-Shuai Cao*, and Zhong-Kun Hu, Physical Review A 106, 033315 (2022).

2)Evaluation of the transportable atom gravimeter HUST-QG, Yao-Yao Xu, Jia-Feng Cui, Kun Qi, Le-Le Chen, Xiao-Bing Deng, Qin Luo, Heng Zhang, Yu-Jie Tan, Cheng-Gang Shao, Min-Kang Zhou, Xiao-Chun Duan* and Zhong-Kun Hu, Metrologia 59, 055001 (2022).

3)Interaction effects of pseudospin-based magnetic monopoles and kinks in a doped dipolar superlattice gas, Xiang Gao, Shao-Jun Li, Shou-Long Chen, Xue-Ting Fang, Qian-Ru Zhu, Xing Deng, Lu-Shuai Cao*, Peter Schmelcher, and Zhong-Kun Hu*, Physical Review A 105, 053308 (2022).

4)Influence of magnetic field on the seismometer in vibration correction for atom gravimeters, Kun Qi, Yao-Yao Xu*, Xiao-Bing Deng, Le-Le Chen, Qin Luo, Min-Kang Zhou, Xiao-Chun Duan, and Zhong-Kun Hu, Review of Scientific Instruments 93, 044503 (2022).

5)Characterizing atom clouds using a charge-coupled device for atom-interferometry-based G measurements, Hua-Qing Luo, Yao-Yao Xu, Xin-Ke Chen, Heng Zhang, Xiao-Bing Deng, De-Kai Mao, Min-Kang Zhou, Xiao-Chun Duan*, and Zhong-Kun Hu, Optics Express 30(7), 10723 (2022).

6)Eliminating the phase shifts arising from additional sidebands in an atom gravimeter with a phase-modulated Raman laser, Qin Luo, Hang Zhou, Le-Le Chen*, Xiao-Chun Duan, Min-Kang Zhou, and Zhong-Kun Hu, Optics Letters 47(1), 114-117 (2022).

7)Measuring the figure of optical elements in vacuum, Qin Luo, Xiao-Jie Ma, Heng Zhang, Zhong-Kun Hu, and Min-Kang Zhou*, Applied Physics B 128, 43 (2022).

8)Determining the Three-Dimensional Position of an Atomic Cloud in an Atom Interferometer Using One Laser Beam, Qin Luo, Hang Zhou, Le-Le Chen*, Xiao-Chun Duan, Zhong-Kun Hu, and Min-Kang Zhou*, Physical Review Applied 17, 024033 (2022).

9)Sensitive quantum tiltmeter with nanoradian resolution, Jie Liu, Wen-Jie Xu, Cheng Zhang, Qin Luo, Zhong-Kun Hu, and Min-Kang Zhou*, Physical Review A 105, 013316 (2022).

10)Impact of additional sidebands generated by a tapered amplifier on an atom interferometer, Hang Zhou, Qin Luo, Xiao-Bing Deng, Le-Le Chen, Xiao-Chun Duan, Zhong-Kun Hu, and Min-Kang Zhou*, Optics Letters 47, 4945-4948 (2022).

2021年:

1)Quantum metrology with precision reaching beyond 1/N-scaling through N-probe entanglement-generating interactions,Xing Deng, Shou-Long Chen, Mao Zhang, Xiao-Fan Xu*, Jing Liu*, Zhi Gao, Xiao-Chun Duan, Min-Kang Zhou, Lu-Shuai Cao*, and Zhong-Kun Hu*, Physical Review A 104, 012607 (2021).

2)A dual-magneto-optical-trap atom gravity gradiometer for determining the Newtonian gravitational constant,De-Kai Mao, Xiao-Bing Deng, Hua-Qing Luo, Yao-Yao Xu, Min-Kang Zhou, Xiao-Chun Duan*, and Zhong-Kun Hu*, Review of Scientific Instruments 92, 053202 (2021).

3)Precisely Mapping the Absolute Magnetic Field in Vacuum by an Optical Ramsey Atom Interferometer,Xiao-Bing Deng, Yao-Yao Xu, Xiao-Chun Duan*, and Zhong-Kun Hu*, Physical Review Applied 15, 054062 (2021).

4)Measuring the effective height for atom gravimeters by applying a frequency jump to Raman lasers,Yao-Yao Xu, Xiao-Bing Deng*, Hang Zhou, Kun Qi, Xin-Ke Chen, Hua-Qing Luo, Min-Kang Zhou, Xiao-Chun Duan, and Zhong-Kun Hu, Review of Scientific Instruments 92, 063202 (2021).

5)The influence of polarization misalignment for modulation transfer spectrum in atom gravimeter, Hang Zhou, Qin Luo*, Le-Le Chen, Min-Kang Zhou, and Zhong-Kun Hu, Review of Scientific Instruments 92, 073002 (2021). 

6)Effects related to the temperature of atoms in an atom interferometry gravimeter based on ultra-cold atoms, Heng Zhang, Xu-Dong Ren, Wen-Hua Yan, Yuan Cheng, Hang Zhou, Zhi Gao*, Qin Luo*, Min-Kang Zhou, and Zhong-Kun Hu, Optics Express 29(19), 30007 (2021).

7)A car-based portable atom gravimeter and its application in field gravity survey,Jiong-Yang Zhang, Wen-Jie Xu, Shi-Da Sun, Yu-Biao Shu, Qin Luo, Yuan Cheng*, Zhong-Kun Hu, and Min-Kang Zhou*, AIP Advances 11, 115223 (2021).

2020年:

1)Movable precision gravimeters based on cold atom interferometry, Jiong-Yang Zhang(张炯阳), Le-Le Chen(陈乐乐)*, Yuan Cheng(程源), Qin Luo(罗覃), Yu-Biao Shu(舒玉彪), Xiao-Chun Duan(段小春), Min-Kang Zhou(周敏康), and Zhong-Kun Hu(胡忠坤)*, Chininese Physics B, Vol. 29, 093702 (2020).

2)The self-attraction effect in an atom gravity gradiometer, Heng Zhang, De-Kai Mao, Qin Luo, Zhong-Kun Hu, Le-Le Chen and Min-Kang Zhou, Metrologia 57, 045011(2020).

3)Effects of wave-front tilt and air density fluctuations in a sensitive atom interferometry gyroscope, Wen-Jie Xu, Ling Cheng, Jie Liu, Cheng Zhang, Ke Zhang, Yuan Cheng, Zhi Gao, Lu-Shuai Cao, Xiao-Chun Duan, Min-Kang Zhou, And Zhong-Kun Hu, Optics Express, 28, 12189 (2020).

4)Multi-wave atom interferometer based on Doppler-insensitive Raman transition, Le-Le Chen, Ke Zhang, Yao-Yao Xu, Qin Luo, Wen-Jie Xu, Min-Kang Zhou, And Zhong-Kun Hu, Optics Express, 28, 8463 (2020).

5)Testing the Universality of Free Fall by Comparing the Atoms in Different Hyperfine States with Bragg Diffraction, Ke Zhang(张柯), Min-Kang Zhou(周敏康)*, Yuan Cheng(程源), Le-Le Chen(陈乐乐), Qin Luo(罗覃), Wen-Jie Xu(徐文杰), Lu-Shuai Cao(曹鲁帅), Xiao-Chun Duan(段小春), Zhong-Kun Hu(胡忠坤), Chinese Physics Letters 37, 043701 (2020).

2019年:

1)The effect due to imperfect optical surface of test mass in laser interferometry absolute gravimeters, Qin Luo, Le-Le Chen, Heng Zhang, Xiao-Chun Duan, Cheng-Gang Shao, Zhong-Kun Hu* and Min-Kang Zhou*, Physica Scripta 94, 125007 (2019).

2)A compact laser system for a portable atom interferometry gravimeter, Qin Luo, Heng Zhang, Ke Zhang, Zhong-Kun Hu, Le-Le Chen*, and Min-Kang Zhou*, Review of Scientific Instruments 90, 043104 (2019).

3)Generalized Bloch oscillations of ultracold lattice atoms subject to higher-order gradients, Qian-Ru Zhu , Shou-Long Chen, Shao-Jun Li, Xue-Ting Fang, Lu-Shuai Cao* and Zhong-Kun Hu*, Physical Review A 100, 053603 (2019).

2018年:

1)Limits on Lorentz violation in gravity from worldwide superconducting gravimeters, Cheng-Gang Shao, Ya-Fen Chen, Rong Sun, Lu-Shuai Cao, Min-Kang Zhou, Zhong-Kun Hu*, Cheng-Hui Yu, and Holger Müller, Physical Review D 97, 024019 (2018).

2)Time base evaluation for atom gravimeters, Jia-Feng Cui, Yao-Yao Xu, Le-Le Chen, Kun Qi, Min-Kang Zhou, Xiao-Chun Duan*, and Zhong-Kun Hu*, Review of Scientific Instruments 89, 083104 (2018).

3)On-site calibration of the Raman laser absolute frequency for atom gravimeters, Yao-Yao Xu, Jia-Feng Cui, Kun Qi, Xiao-Bing Deng, Min-Kang Zhou, Xiao-Chun Duan*, and Zhong-Kun Hu*, Physical Review A 97, 063626(2018).

4)Momentum-resolved detection for high-precision Bragg atom interferometry, Yuan Cheng, Ke Zhang, Le-Le Chen, Tao Zhang, Wen-Jie Xu, Xiao-Chun Duan, Min-Kang Zhou*, Zhong-Kun Hu*, Physical Review A 98, 043611 (2018).

5)Note: Effect of the parasitic forced vibration in an atom gravimeter, Le-Le Chen, Qin Luo, Heng Zhang, Xiao-Chun Duan, Min-Kang Zhou*, and Zhong-Kun Hu*, Review of Scientific Instruments 89, 066105 (2018).

6)Improved frequency-shift gravity-gradient compensation on canceling the Raman-pulse-duration effect in atomic gravimeters, Ya-Jie Wang, Xiao-Yu Lu, Yu-Jie Tan, Cheng-Gang Shao*, and Zhong-Kun Hu*, Physical Review A 98, 053604 (2018).

7)Generating scalable entanglement of ultracold bosons in superlattices through resonant shaking, Lu-Shuai Cao, Xing Deng, Qian-Ru Zhu, Xiao-Fan Xu, Xue-Ting Fang, Xiang Gao, Peter Schmelcher and Zhong-Kun Hu*, Physical Review A 97, 063620 (2018).

2017年:

1)Quantum tiltmeter with atom interferometry, Wen-Jie Xu, Min-Kang Zhou*, Miao-Miao Zhao, Ke Zhang, and Zhong-Kun Hu*, Physical Review A 96, 063606 (2017).

2)Comparison of the sensitivities for atom interferometers in two different operation methods, Xiao-Chun Duan, De-Kai Mao, Xiao-Bing Deng, Min-Kang Zhou, Cheng-Gang Shao, Zhu Zhu and Zhong-Kun Hu*, Chinese Physics B 27(1): 013701 (2017).

3)Common-mode noise rejection using fringe-locking method in WEP test by simultaneous dual-species atom interferometers, Xiao-Bing Deng, Xiao-Chun Duan, De-Kai Mao, Min-Kang Zhou, Cheng-Gang Shao and Zhong-Kun Hu*, Chinese Physics B 26(4): 043702 (2017).

4)Low-phase noise and high-power laser for Bragg atom interferometer, Yuan Cheng, Ke Zhang, Le-Le Chen, Wen-Jie Xu, Qin Luo, Min-Kang Zhou*, and Zhong-Kun Hu*, AIP advance 7, 095211 (2017).

5)Rotation detection using the precession of molecular electric dipole moment, Yi Ke, Xiao-Bing Deng, and Zhong-Kun Hu*, Physical Review Applied 8, 054036 (2017).

6)Relativistic effects in atom gravimeters, Yu-Jie Tan, Cheng-Gang Shao* and Zhong-Kun Hu*, Physical Review D 95, 024002 (2017).

7)Time delay and the effect of the finite speed of light in atom gravimeters, Yu-Jie Tan, Cheng-Gang Shao* and Zhong-Kun Hu*, Physical Review A 96, 023604 (2017).

8)Collective excitations of dipolar gases based on local tunneling in superlattices, Lu-Shuai Cao*, Simeon I. Mistakidis, Xing Deng, Peter Schmelcher*, Chemical Physics 482, 303 (2017).

9)A unified ab initio approach to the correlated quantum dynamics of ultracold fermionic and bosonic mixtures, Lu-Shuai Cao*, V. Bolsinger, S. I. Mistakidis, G. M. Koutentakis, S. Kroenke, J. M. Schurer, and P. Schmelcher*, Journal of Chemical Physics 147, 044106 (2017).

2016年:

1)基于原子干涉技术的精密重力测量研究,陈乐乐,罗覃,邓小兵,谈玉杰,毛德凯,张恒,周敏康,段小春,邵成刚,胡忠坤*,中国科学:物理天文力学 46, 073003 (2016).

2)Test of the Universality of Free Fall with Atoms in Different Spin Orientations, Xiao-Chun Duan, Xiao-Bing Deng, Min-Kang Zhou, Ke Zhang, Wen-Jie Xu, Feng Xiong, Yao-Yao Xu, Cheng-Gang Shao, Jun Luo, and Zhong-Kun Hu*, Physical Review Letters 117, 023001(2016).

3)Effect of the Gaussian distribution of both atomic cloud and laser intensity in an atom gravimeter,Min-Kang Zhou, Le-Le Chen, Qin Luo, Ke Zhang, Xiao-Chun Duan, and Zhong-Kun Hu*, Physical Review A 93, 053615(2016).

4)Observing the effect of wave-front aberrations in an atom interferometer by modulating the diameter of Raman beams, Min-Kang Zhou, Qin Luo, Le-Le Chen, Xiao-Chun Duan, and Zhong-Kun Hu*, Physical Review A 93, 043610(2016).

5)Atomic multiwave interferometer for Aharonov-Casher-phase measurements,Min-Kang Zhou, Ke Zhang, Xiao-Chun Duan, Yi Ke, Cheng-Gang Shao, and Zhong-Kun Hu*, Physical Review A 93, 023641(2016).

6)Low chromatic aberration hexapole for molecular state selection, Yi Ke, Xiao-Bing Deng and Zhong-Kun Hu*, Journal of Physics B: Atomic, Molecular and Optical Physics 49, 025101(2016).

7)A general relativistic model for free-fall absolute gravimeters, Yu-Jie Tan, Cheng-Gang Shao, Jia Li and Zhong-Kun Hu*, Metrologia 53, 846 (2016).

2015年:

1)Raman-pulse-duration effect in gravity gradiometers composed of two atom interferometers, Cheng-Gang Shao, De-Kai Mao, Min-Kang Zhou, Yu-Jie Tan, Le-Le Chen, Jun Luo, and Zhong-Kun Hu*, Physical Review A 92, 053613 (2015).

2)Noise limit of a torsion pendulum under optomechanical control, Yu-Jie Tan, Zhong-Kun Hu and Cheng-Gang Shao*, Physical Review A 92, 032131(2015).

3)The speed of light perturbation in absolute gravimeters from the viewpoint of 'relativistic geometry', Cheng-Gang Shao, Yu-Jie Tan, Jia Li and Zhong-Kun Hu*, Metrologia 52, 324 (2015).

4)Investigating the frequency-dependent amplification of a tapered amplifier in atom interferometers, Su Zhan, Xiao-Chun Duan, Min-Kang Zhou, Hui-Bin Yao, Wen-Jie Xu, and Zhong-Kun Hu*, Optics Letters 40, 1 (2015).

5)Note: Directly measuring the direct digital synthesizer frequency chirp-rate for an atom interferometer, Juan-Juan Tao, Min-Kang Zhou*, Qiao-Zhen Zhang, Jia-Feng Cui, Xiao-Chun Duan, Cheng-Gang Shao, and Zhong-Kun Hu*, Review of Scientific Instruments 86, 096108 (2015).

6)Note: A three-dimension active vibration isolator for precision atom gravimeters, Min-Kang Zhou, Xin Xiong, Le-Le Chen, Jia-Feng Cui, Xiao-Chun Duan, and Zhong-Kun Hu*, Review of Scientific Instruments 86 046108 (2015).

7)Micro-Gal level gravity measurements with cold atom interferometry, Zhou Min-Kang(周敏康), Duan Xiao-Chun(段小春), Chen Le-Le(陈乐乐),Luo Qin(罗覃), Xu Yao-Yao(徐耀耀), and Hu Zhong-Kun(胡忠坤) *,Chinese Physics B, Vol. 24, No. 5 050401 (2015).

8)Contrast decay in a trapped-atom interferometer, A. Hilico, C. Solaro, Min-Kang Zhou, M. Lopez, and F. Pereira dos Santos*, Physical Review A, 91, 053616(2015).

2014年:

1)Operating an atom-interferometry-based gravity gradiometer by the dual-fringe-locking method, Xiao-Chun Duan, Min-Kang Zhou, De-Kai Mao, Hui-Bing Yao, Xiao-Bing Deng, Jun Luo, and Zhong-Kun Hu*, Physical Review A, 90, 023617 (2014).

2)Decelerating polar molecules using traveling microwave lattices, Zhong-Kun Hu*, Yi Ke, Jin-Bo Zhao, Xiao-Bing Deng, and Jun Luo, Physical Review A, 89(5), 053428(2014).

2013年:

1)Demonstration of an ultrahigh-sensitivity atom-interferometry absolute gravimeter, Zhong-Kun Hu*, Bu-Liang Sun, Xiao-Chun Duan, Min-Kang Zhou, Le-Le Chen, Su Zhan, Qiao-Zhen Zhang, and Jun Luo, Physical Review A 88,043610 (2013).

2)Atomic multiwave interferometer in an optical lattice, Min-Kang Zhou, Bruno Pelle, Adèle Hilico, Franck Pereira dos Santos*, Physical Review A 88, 013604 (2013).

2012年:

1)Performance of a cold-atom gravimeter with an active vibration isolator, Min-Kang Zhou, Zhong-Kun Hu*, Xiao-Chun Duan, Bu-Liang Sun, Le-Le Chen, Qiao-Zhen Zhang, and Jun Luo, Physical Review A 86, 043630 (2012).

2)Proposed Test of the Equivalence Principle with Rotating Cold Polar Molecules, Hu Zhong-Kun(胡忠坤)*, Ke Yi(柯毅), Deng Xiao-Bing(邓小兵), Zhou Ze-Bing(周泽兵), Luo Jun(罗俊) , Chinese Physics Letters 29(8), 080401 (2012).

2011年:

1)Simultaneous differential measurement of a magnetic-field gradient by atom interferometry double fountains, Zhong-Kun Hu*, Xiao-Chun Duan, Min-Kang Zhou, Bu-Liang Sun, Jin-Bo Zhao and Jun Luo, Physical Review A 84, 013620 (2011).

2010年:

1)Precisely mapping the magnetic field gradient in vacuum with an atom interferometer, Min-Kang Zhou, Zhong-Kun Hu*, Xiao-Chun Duan, Bu-liang Sun, Jin-Bo Zhao and Jun Luo, Physical Review A 82, 061602R (2010).

2009年:

1)Experimental progress in gravity measurement with an atom interferometer,Min-Kang Zhou, Zhong-Kun Hu*, Xiao-Chun Duan, Bu-Liang Sun, Jin-Bo Zhao and Jun Luo, Frontiers of Physics in China 04, 170 (2009).

授权专利

专利名称 专利号/申请号 授权日期
一种用于原子干涉重力测量的真空装置 ZL201611056996.3 20190412
一种基于双物质波源的原子干涉重力测量装置 ZL201611120894.3 20190618
一种阵列式原子干涉重力梯度张量全分量的测量系统 ZL201611217569.9 20180904
一种基于原子干涉的量子倾斜仪 ZL201710481059.0 20191112
一种两自由度原子干涉陀螺仪 ZL201911021861.7 20211203
一种用于真空环境下测量光学元件面形的装置及方法 202110573545.1 20220805
一种原子干涉仪的光源系统 202123454430.5 20220603
一种基于边带抑制的原子干涉仪光源 201621128761.6 20170419
一种双内态Bragg原子干涉惯性传感器 201621264241.8 20170606
一种原子干涉仪真空容器的支撑装置 201621277430.9 20170728
一种原子干涉仪中基于微波回泵原子的探测系统 201720767773.1 20180223
一种基于错位锥镜的原子重力梯度仪
202123452927.3 20220607