研究进展

当前位置: 首页 > 空间光学 > 研究进展

研究进展

一、研究进展

1.  星间激光测距地面模拟系统

20米臂长星间激光干涉仪的位移分辨率优于10 nm、光功率衰减倍率小于10^-8、指向测控精度优于10 μrad,位移噪声本底在0.1 Hz处达到1 nm/√Hz

星间激光干涉仪地面模拟系统设计、实物、位移测量结果


2.  星间激光测速干涉仪

模拟星间的高速相对运动,自研高精度光纤激光干涉仪,速度测量范围可达10 m/s,速度测量分辨率优于1 nm/s

高精度激光测速干涉仪

3.  弱光相位测量系统研制

四象限光电探测器接收弱光功率范围1pW-100nW,带宽大于30MHz,电压噪声本底小于30nV/√Hz4通道相位测量,采样率120MHz,相位测量噪声本底在1mHz处达到10 μrad/√Hz

光电探测与相位测量

4.  基于双偏振光纤外差干涉的高精度位移测量

构建双偏振差分光纤外差干涉,实现了 0.1Hz 1.8pm/√Hz1Hz0.25pm/√Hz的高精度位移测量。

双偏振差分光纤外差干涉系统与位移测量本底

二、发表论文

[1] Qi Xia, Yu-Rong Liang*, Hao Yan*, Zhi-Lin Xu, Li Liu and Ze-Bing Zhou. High-precision Laser Beam Lateral Displacement Measurement Based on Differential Wavefront Sensing. to be published in Optics Letters, 2023 (doi: 10.1364/OL.497299)

[2] Yi Shi, Zhilin Xu*, Junhui Wu, Liuyang Chen, Yurong Liang, Qizhen Sun and Zebing Zhou. Ultra-low frequency high-precision displacement measurement based on dual-polarization differential fiber heterodyne interferometer. Journal of Lightwave Technology, 2023, 41(17): 5773 – 5779. (doi: 10.1109/JLT.2023.3267946)

[3] Junhui Wu, Zhilin Xu*, Yixiang Zhang, Yurong Liang, Qizhen Sun, and Zebing Zhou. High-resolution two-degrees of freedom displacement measurement based on fiber Fabry-Perot interferometer and Pound–Drever–Hall technique. IEEE Sensors Journal, 2023, 23(15): 16859-16865. (doi: 10.1109/JSEN.2023.3282676)

[4] Xiang Lin, Hao Yan, Yi-Qiu Ma, and Ze-Bing Zhou. A construction method of the quasi-monolithic compact interferometer based on UV-adhesive bonding. Review of Scientific Instruments, 2023, 94, 074501. (doi: 10.1063/5.0155637)

[5] Si-Yuan Xie, Han-Yu Zeng, Yu-Hang Pan, Diao-Min He, Si-cheng Jiang, Ying-Zi Li, Yuan-Bo Du, Hao Yan, Hsien-chi Yeh. Bi-directional PRN laser ranging and clock synchronization for TianQin mission. Optics Communications, 2023, 541: 129558. (doi.org/10.1016/j.optcom.2023.129558)

[6] Yan-Chong Liu, Hao Yan and Ze-Bing Zhou. Asingle quasi-cubic test mass configuration for space-based gravitational wave detection. Classical and Quantum Gravity, 2023, 40, 015005. (doi.org/10.1088/1361-6382/aca57f)

[7] Hao Yan, Hai-Xing Miao, ShunWang, Yi-Qiu Ma*, and Ze-Bing Zhou*. Noise effect of test mass surface roughness in spaceborne gravitational wave detectors. Physical Review D, 2023, 103(4): 042001. (doi.org/10.1103/PhysRevD.108.042001)

[8] Zhilin Xu*, Zihao Wang, Liuyang Che, Ji Fan, and Liangcheng Tu. Two-dimensional displacement sensor based on a dual-cavity Fabry-Perot interferometer. Journal of Lightwave Technology, 2022, 40(4): 1195-1201. (doi: 10.1109/JLT.2021.3126462)

[9] Hao Yan, Hsien-Chi Yeh and Qiu-Li Mao. High precision six-degree-of-freedom interferometer for test mass readout. Classical and Quantum Gravity, 2022, 39: 075024. (doi.org/10.1088/1361-6382/ac5923)

[10] Ming-Yang Xu, Han-Zhong Wu, Yu-Rong Liang, Dan Luo, Pan-Pan Wang, Yu-Jie Tan, Cheng-Gang Shao*. Weak-Light Phase-Locking Time Delay Interferometry with Optical Frequency Combs. Sensors (Basel), 2022, 22, 7349. (doi: 10.3390/s22197349)

[11] Hao Yan, Liuyang Chen, Zhilin Xu, Xiang Lin, and Yurong Liang*. All-fiber heterodyne velocity and displacement interferometer based on DPLL Doppler tracking with sub-nanometer per second and picometer sensitivity. Applied Optics, 2022, 61, 9569-9575. (doi: 10.1364/AO.473716)

[12] Yu-Rong Liang*, Yu-Jie Feng, Guo-Yao Xiao, Yuan-Ze Jiang, Lin Li, and Xue-Lin Jin. Experimental scheme and noise analysis of weak-light phase locked loop for large-scale intersatellite laser interferometer. Review of Scientific Instruments, 2021, 92, 124501. (doi: 10.1063/5.0058659)

[13] Yuan-Ze Jiang, Xue-Lin Jin, Hsien-Chi Yeh, and Yu-Rong Liang*. Shot-noise-limit performance of a weak-light phase readout system for intersatellite heterodyne interferometry. Optics Express, 2021, 29, 18336-18350. (doi: 10.1364/OE.424968)

[14] Zihao Wang, Zhilin Xu*, Liuyang Chen, Yi Shi, Xiaoyun Wang, Junhui Wu, Ji Fan, and Liangcheng Tu. Highly precise in-plane displacement sensor based on an asymmetric fiber Fabry–Perot interferometer. Optics Letters, 2021, 46(16): 3945-3948. (doi: 10.1364/OL.430389)

[15] Hao Yan, Qiu-Li Mao, Si-Yuan Xie, Shuai Liu, Jun Luo, and Hsien-chi Yeh*. Highly linear sub-nanoradian tilt measurement based on dual-beam interferometry. Optics Letters, 2020, 45(10): 2792-2795. (doi.org/10.1364/OL.392856)

[16] Min Ming, Ying-Xin Luo, Yu-Rong Liang, Jing-Yi Zhang, Hui-Zong Duan, Hao Yan, Yuan-Ze Jiang, Ling-Feng Lu, Qin Xiao, Ze-Bing Zhou, Hsien-Chi Yeh, "Ultraprecision intersatellite laser interferometry," International Journal of Extreme Manufacturing, 2020, 2, 022003. (doi: 10.1088/2631-7990/ab8864)

[17] Jun Luo, Yan-Zheng Bai, Lin Cai, Bin Cao, Wei-Ming Chen, Yu Chen, De-Cong Cheng, Yan-Wei Ding, Hui-Zong Duan, Xingyu Gou, Chao-Zheng Gu, De-Feng Gu, Zi-Qi He, Shuang Hu, Yuexin Hu, Xiang-Qing Huang, Qinghua Jiang, Yuan-Ze Jiang, Hong-Gang Li, Hong-Yin Li, Jia Li, Ming Li, Zhu Li, Zhu-Xi Li, Yu-Rong Liang, Fang-Jie Liao, Yan-Chong Liu, Li Liu, Pei-Bo Liu, Xuhui Liu, Yuan Liu, Xiong-Fei Lu, Yan Luo, Jianwei Mei, Min Ming, Shao-Bo Qu, Ding-Yin Tan, Mi Tang, Liang-Cheng Tu*, Cheng-Rui Wang, Fengbin Wang, Guan-Fang Wang, JianWang, Lijiao Wang, Xudong Wang, RanWei, Shu-Chao Wu, Chun-Yu Xiao, Meng-Zhe Xie, Xiao-Shi Xu, Liang Yang, Ming-Lin Yang, Shan-Qing Yang, Hsien-Chi Yeh*, Jian-Bo Yu, Lihua Zhang*, Meng-Hao Zhao and Ze-Bing Zhou*. The first round result from the TianQin-1 satellite. Classical and Quantum Gravity, 2020, 37, 185013. (doi: 10.1088/1361-6382/aba66a)

[18] Yu-Rong Liang*. Note: A new method for directly reducing the sampling jitter noise of the digital phasemeter. Review of Scientific Instruments, 2018, 89, 036106. (doi.org/10.1063/1.5011654)

[19] Hui-Zong Duan, Yu-Rong Liang, Hsien-Chi Yeh*. Analysis of non-linearity in differential wavefront sensing technique. Optics Letters, 2016, 41(5): 914-917. (doi: 10.1364/OL.41.000914)

[20] Hao Yan, Hui-Zong Duan, Lin-Tao Li, Yu-Rong Liang, Jun Luo, and Hsien-Chi Yeh*. A dual-heterodyne laser interferometer for simultaneous measurement of linear and angular displacements. Review of Scientific Instruments, 2015, 86, 123102. (doi: 10.1063/1.4936771)

[21] Yu-Rong Liang, Hui-Zong Duan, Xin-Long Xiao, Bing-Bing Wei, and Hsien-Chi Yeh*. Note: Inter-satellite laser range-rate measurement by using digital phase locked loop. Review of Scientific Instruments, 2015, 86, 016106. (doi.org/10.1063/1.4905579)

[22] Yu-Rong Liang, Hui-Zong Duan, Hsien-Chi Yeh*, and Jun Luo. Fundamental limits on the digital phase measurement method based on cross-correlation analysis. Review of Scientific Instruments, 2012, 83, 095110. (doi.org/10.1063/1.4751867)

[23] Hsien-Chi Yeh, Qi-Zhong Yan, Yu-Rong Liang, Ying Wang, and Jun Luo*. Intersatellite laser ranging with homodyne optical phase locking for Space Advanced Gravity Measurements mission. Review of Scientific Instruments, 2011, 82, 044501. (doi.org/10.1063/1.3574798)