1、太阳能驱动二氧化碳(CO2)转化
(1)光电催化还原二氧化碳
光电催化还原二氧化碳是利用光能和电能将二氧化碳转化为液体燃料或其他有机化合物,还原过程结合了光催化和电催化的优点。在光照条件下,半导体催化剂被入射光激发,当催化剂吸收大于或等于其带隙能量的光子能量后,电子从价带跃迁到导带,产生光生电子-空穴对。随后在外加偏压形成的电场作用下,光生电子或空穴发生定向转移,促使电子-空穴对的分离,增加反应所需的电子数目进而可提高CO2的电化学还原效率。一般来说,在光电催化还原CO2的过程中,p型半导体光阴极利用光生电子对CO2催化还原,将其转化为液体燃料或其他有机化合物,对电极上光生空穴将水氧化生成H+和O2。
图1. (a) 异质结界面的能带构型和电荷分离示意图;(b)g-C3N4/ZnTe光电催化剂的制备.
代表作:
1、Q. Wang, X. Wang, Z. Yu, X. Jiang, J. Chen, L. Tao, M. Wang, Y. Shen. Artificial photosynthesis of ethanol using type-II g-C3N4/ZnTe heterojunction in photoelectrochemical CO2 reduction system. Nano Energy, 2019, 60: 827-835.
2、Q. Wang, L. Tao, X. Jiang, M. Wang, Y. Shen. Graphene oxide wrapped CH3NH3PbBr3 perovskite quantum dots hybrid for photoelectrochemical CO2 reduction in organic solvents. Applied Surface Science, 2019, 465: 607-613.
(2)电催化还原二氧化碳
电催化还原二氧化碳已成为一种新兴技术,其目的不仅是降低二氧化碳水平,而且还将这种不受欢迎的分子转化为增值的化学产品。电催化还原二氧化碳反应有着条件温和、还原效率高、选择性可控、反应装置简单等优势,因此应用潜力巨大。利用金属Cu分布广泛、价格低廉、催化性能优良的独特优势,依据Sabatier原则选择异质金属(如Sn、Cd、In等)促进CO2催化还原反应的高选择性发生,增加催化剂稳定性。
图2. (a) BM Sn-Cu催化剂电催化还原二氧化碳反应机理示意图;(b)Bi-rGO催化剂电催化还原二氧化碳反应机理示意图.
代表作:
1、X. Jiang, X. Wang, Z. Liu, Q. Wang, X. Xiao, H. Pan, M. Li, J. Wang, Y. Shao, Z. Peng, Y. Shen, M. Wang. A highly selective tin-copper bimetallic electrocatalyst for the electrochemical reduction of aqueous CO2 to formate. Applied Catalysis B: Environmental, 2019, 259: 118040.
2、X. Jiang, Q. Wang, X. Xiao, J. Chen, Y. Shen, M. Wang. Interfacial engineering of bismuth with reduced graphene oxide hybrid for improving CO2 electroreduction performance. Electrochimica Acta, 2020, 357: 136840.
3、X. Wang, X. Jiang, Q. Wang, T. Zhang, P. Li, M. Wang, Y. Shen. Investigation on In–TiO2 composites as highly efficient elecctrocatalyst for CO2 reduction. Electrochimica Acta, 2020, 340: 135948.
4、C. Wang, M. Cao, X. Jiang, M. Wang, Y. Shen. A catalyst based on copper-cadmium bimetal for electrochemical reduction of CO2 to CO with high faradaic efficiency. Electrochimica Acta, 2018, 271: 544-550.
2、太阳能制氢
(1)光电催化分解水
与光电催化还原二氧化碳类似,在光电催化分解水的过程中,以n型半导体光阳极(TiO2)为例,光生电子进入外电路流向对电极,空穴仍留在半导体的价带,氧化水生成氧气,水中的质子则接受对电极上的电子产生氢气。
图3. (a) 光电催化分解水示意图;(b) 钙钛矿太阳能电池驱动水分解制氢.
代表作:
1、X. Lv, L. Tao, M. Cao, X. Xiao, M. Wang, Y. Shen. Enhancing photoelectrochemical water oxidation efficiency via self-catalyzed oxygen evolution: A case study on TiO2. Nano Energy, 2018, 44: 411-418.
2、X. Zhang, B. Zhang, Z. Zuo, M. Wang, Y. Shen. N/Si co-doped oriented single crystalline rutile TiO2 nanorods for photoelectrochemical water splitting. Journal of Materials Chemistry A, 2015, 3(18): 10020-10025.
3、X. Lv, M. Cao, W. Shi, M. Wang, Y. Shen. A new strategy of preparing uniform graphitic carbon nitride films for photoelectrochemical application. Carbon, 2017, 117: 343-350.
4、X. Zhang, B. Zhang, D. Huang, H. Yuan, M. Wang, Y. Shen. TiO2 nanotubes modified with electrochemically reduced graphene oxide for photoelectrochemical water splitting. Carbon, 2014, 80: 591-598.
5、X. Lv, X. Xiao, M. Cao, Y. Bu, C. Wang, M. Wang, Y. Shen. Efficient carbon dots/NiFe-layered double hydroxide/BiVO4 photoanodes for photoelectrochemical water splitting. Applied Surface Science, 2018, 439: 1065-1071.
(2)电催化分解水
氢能是一种理想的绿色能源载体,具有无可比拟的潜在开发价值。电解水制备氢气是当代绿色能源技术(例如水碱电解装置、氯碱电解装置、质子交换膜电解装置和太阳能电解水装置等)的重要组成部分。目前,大量的廉价过渡金属(如Fe,Co,Ni,Mo,W)基材料被应用于析氢反应。本课题组依据过渡族金属基电化学产氢催化剂的合成,结构和分子设计等方面做了一系列的研究工作,并指出了各类催化剂在现阶段发展中存在的科学挑战和难题。
图4. (a) Ru-CoP/CC催化剂合成的示意图;(b) Ru (Ni, Fe)(OH)2/NF催化剂合成的示意图.
代表作:
1、X. Xiao, X. Wang, B. Li, X. Jiang, Y. Zhang, M. Li, S. Song, S. Chen, M. Wang, Y. Shen, Z. Ren. Regulating the electronic configuration of ruthenium nanoparticles via coupling cobalt phosphide for hydrogen evolution in alkaline media. Materials Today Physics, 2020, 12: 100182.
2、X. Xiao, X. Wang, X. Jiang, S. Song, D. Huang, L. Yu, Y. Zhang, S. Chen, M. Wang, Y. Shen, Z. Ren. In Situ Growth of Ru Nanoparticles on (Fe,Ni)(OH)2 to Boost Hydrogen Evolution Activity at High Current Density in Alkaline Media. Small Methods, 2020, 4(6): 1900796.
3、X. Xiao, S. Liu, D. Huang, X. Lv, M. Li, X. Jiang, L. Tao, Z. Yu, Y. Shao, M. Wang, Y. Shen. Highly Efficient Hydrogen Production Using a Reformed Electrolysis System Driven by a Single Perovskite Solar Cell. ChemSusChem, 2019, 12(2): 434-440.
4、M. Li, L. Tao, X. Xiao, X. Jiang, M. Wang, Y. Shen. Iron incorporation affecting the structure and boosting catalytic activity of Cox-Fey-P for efficient hydrogen evolution. Applied Surface Science, 2019, 478: 103-109.
5、L. Tao, M. Huang, S. Guo, Q. Wang, M. Li, X. Xiao, G. Cao, Y. Shao, Y. Shen, Y. Fu, M. Wang. Surface modification of NiCo2Te4 nanoclusters: a highly efficient electrocatalyst for overall water-splitting in neutral solution. Applied Catalysis B: Environmental, 2019, 254: 424-431.
6、X. Xiao, D. Huang, Y. Fu, M. Wen, X. Jiang, X. Lv, M. Li, L. Gao, S. Liu, M. Wang, C. Zhao, Y. Shen. Engineering NiS/Ni2P Heterostructures for Efficient Electrocatalytic Water Splitting. ACS Applied Materials & Interfaces, 2018, 10(5): 4689-4696.
7、X. Xiao, L. Tao, M. Li, X. Lv, D. Huang, X. Jiang, H. Pan, M. Wang, Y. Shen. Electronic modulation of transition metal phosphide via doping as efficient and pH-universal electrocatalysts for hydrogen evolution reaction. Chemical Science, 2018, 9(7): 1970-1975.
3、扫描电化学显微镜(SECM)
扫描电化学显微镜(SECM)作为一种研究界面电荷传输与交换过程的强有力工具,已经在固/液界面,液/液界面的研究中得到了广泛的应用。1994年,Fujishima教授等人首次使用SECM对光催化剂的活性以及反应中气体产物O2的分布进行表征。最近,Bard教授等人使用SECM分别对光电催化剂TiO2和BiVO4表面羟基自由基(HO-•)的浓度,以及羟基自由基向过氧化氢降解的速率(kOH-•)进行了表征。在前期实验中,我们课题组运用扫描电化学显微镜的反馈工作模式对染料/量子点敏化太阳能电池中敏化剂的再生过程以及光阳极/电解质界面电荷复合过程做了比较深入的研究,这些都奠定了SECM可用来研究光电催化反应动力学过程的理论基础。
图5. (a) 制备Pt超微电极所用的仪器;(b) SECM测试染料电池中敏化剂再生过程的原理示意图.
代表作:
1、B. Zhang, X. Zhang, X. Xiao, Y. Shen. Photoelectrochemical Water Splitting System—A Study of Interfacial Charge Transfer with Scanning Electrochemical Microscopy. ACS Applied Materials & Interfaces, 2016, 8(3): 1606-1614.
2、B. Zhang, X. Xu, X. Zhang, D. Huang, S. Li, Y. Zhang, F. Zhan, M. Deng, Y. He, W. Chen, Y. Shen, M. Wang. Investigation of Dye Regeneration Kinetics in Sensitized Solar Cells by Scanning Electrochemical Microscopy. Chemphyschem, 2014, 15(6): 1182-1189.
3、B. Zhang, H. Yuan, X. Zhang, D. Huang, S. Li, M. Wang, Y. Shen. Investigation of Regeneration Kinetics in Quantum-Dots-Sensitized Solar Cells with Scanning Electrochemical Microscopy. ACS Applied Materials & Interfaces, 2014, 6(23): 20913-20918.
4、G. Alemu, B. Zhang, J. Li, X. Xu, J. Cui, Y. Shen, M. Wang. INVESTIGATION OF DYE-REGENERATION KINETICS AT DYE-SENSITIZED p-TYPE CuCrO2 FILM/ELECTROLYTES INTERFACE WITH SCANNING ELECTROCHEMICAL MICROSCOPY. Nano, 2014, 09(05): 1440008.
5、G. Alemu, J. Cui, K. Cao, J. Li, Y. Shen, M. Wang. Investigation of the regeneration kinetics of organic dyes with pyridine ring anchoring groups by scanning electrochemical microscopy. RSC Advances, 2014, 4(93): 51374-51380.
4、磁电流效应
外加磁场能够影响并改变化学反应中的反应速率和生成物的产率及分布,这类磁场效应能够在液体,固体以及受限的媒介(例如胶束)中观察到,由此而产生一门新的学科——自旋化学。自旋化学主要是研究反应物的电子和核的自旋对化学反应活性的影响。这些磁现象涉及扩散过程、化学反应过程和量子效应与反应物的电子和核的自旋间复杂的相互作用。测量和分析磁场效应对化学反应的影响能够获知参与反应的反应物的反应活性、结构和运动趋势,从而间接捕获到化学反应中间态的相关信息。
图6. 磁场作用下,反应中间态的转换与产物之间的关系示意图.
图7. (a) 水合肼催化氧化的磁电流效应;(b) 草酸盐电催化氧化反应的磁电流效应;(c) 二氧化碳还原过程中的磁电流效应.
代表作:
1、H. Pan, X. Jiang, X. Wang, Q. Wang, M. Wang, Y. Shen. Effective Magnetic Field Regulation of the Radical Pair Spin States in Electrocatalytic CO2 Reduction. The Journal of Physical Chemistry Letters, 2020, 11(1): 48-53.
2、H. Pan, M. Wang, Y. Shen, B. Hu. Large Magneto-Current Effect in the Electrochemical Detection of Oxalate in Aqueous Solution. The Journal of Physical Chemistry C, 2018, 122(34): 19880-19885.
3、H. Pan, X. Xiao, B. Hu, Y. Shen, M. Wang. Generating Huge Magnetocurrent by Using Spin-Dependent Dehydrogenation Based on Electrochemical System. The Journal of Physical Chemistry C, 2017, 121(51): 28420-28424.