·Personal Information
研究方向:新能源材料与器件
Email: liyynano@hust.edu.cn
个人简介:
2009年6月毕业于华中师范大学凝聚态物理专业,获博士学位。2009年7月至2010年4月于武汉理工大学材料复合新技术国家重点实验室担任助理研究员;2010年4月进入18luck新利电竞 工作;2017年12月至2018年12月赴澳大利亚伍伦贡大学进行访问研究。长期从事功能纳米半导体材料及其能源领域应用,包括薄膜/柔性超级电容器、微电容器及二次电池领域。所取得的研究结果,已在Nano Lett., Adv. Mater.系列, Adv. Sci., Sci. China-Mater., Chem. Mater., J. Mater. Chem. A, ACS Appl. Mater. Interfaces, AIP Adv.等国际SCI刊物上发表,共60余篇。论文被SCI他引8000余次,其中全球ESI 1%高被引论文7篇,两篇通讯作者论文SCI单篇引用分别近1000和500次。获湖北省自然科学三等奖、湖北省优秀学术论文奖、Wiley Top Cited Paper Award奖等,参加多次国际学术会议。主持国家自然科学面上基金和青年基金共3项,湖北省自然科学基金面上项目1项,中央高校基本业务经费项目2项,校GF自主创新基金一项等,作为骨干参与总装预研项目、国家自然科学基金面上项目等共五项。
主要科研项目
1. 国家自然科学基金面上项目,高比能水系钠离子电容器结构-电解质协同设计、储钠机理与功能化,2021.01-2024.12,主持
2. 国家自然科学基金面上项目,Mn(II)基氧化物电活化调控及其高电压水凝胶电解质微型超电容三维一体化设计,2019.01-2022.12,主持
3. 湖北省自然科学基金面上项目,Fe2O3基三维核壳纳米结构叉指负极的制备及高能微型超电容应用, 2018.01-2019.12,主持
4. 国家自然科学基金青年项目,新型BiOBr-BiOI/TiO2纳米异质有序阵列的生长调控与光电性能研究,2012.1-2014.12 ,主持
5. 国家自然科学基金面上项目,电场磁场可调频带微波谐振器的基础研究,2013.1-2016.12,排名第三
代表性论文:
1. Surface and Interface Engineering of Nanoarrays towards Advanced Electrodes and Electrochemical Energy Storage Devices, Advanced Materials, 2020, DOI: 10.1002/adma.202004959.
2. Directly grown nanostructured electrodes for high-power and high-stability alkaline nickel/bismuth batteries , Science China-Materials, 2019, 62(4): 487-496.
3. A directly grown pristine Cu-CAT metal-organic framework as an anode material for high-energy sodium-ion capacitors, Chemical Communications, 2019, 55(75): 11207-11210.
4. Electrodepositing 3D porous rGO electrode for efficient hydrogel electrolyte integration towards 1.6 V flexible symmetric supercapacitors, Chemical Communications, 2019, 55, 8282-8285.
5. "Carbon-Glue" Enabled Highly Stable and High-Rate Fe3O4 Nanorod Anode for Flexible Quasi-Solid-State Nickel-Copper//Iron Alkaline Battery, Advanced Materials Interfaces, 2018, 5(20): 1801043-1801051.
6. Battery-Supercapacitor Hybrid Devices: Recent Progress and Future Prospects, Advanced Science, 2017, 4(7): 1600539-1600559.
7. Novel Dual-Ion Hybrid Supercapacitor Based on a NiCo2O4 Nanowire Cathode and MoO2-C Nanofilm Anode, ACS Applied Materials & Interfaces, 2016, 8(44): 30232-30238.
8. Integrated copper-nickel oxide mesoporous nanowire arrays for high energy density aqueous asymmetric supercapacitors, Nanoscale Horizons, 2016, 1, 150.
9. Construction of High-Capacitance 3D CoO@Polypyrrole Nanowire Array Electrode for Aqueous Asymmetric Supercapacitor, Nano Letters, 2013, 13, 2078-2085.
10. Recent Advances in Metal Oxide-based Electrode Architecture Design for Electrochemical Energy Storage, Advanced Materials, 2012, 24, 5166-5180.
11. Building One-Dimensional Oxide Nanostructure Arrays on Conductive Metal Substrates for Lithium-Ion Battery Anodes, Nanoscale, 2011, 3, 45-58.
12. Directly Grown Nanostructured Electrodes for High Volumetric Energy Density Binder-Free Hybrid Supercapacitors: A Case Study of CNTs//Li4Ti5O12, Scientific Reports, 2015, 5, 7780.
13. High-voltage and high-rate symmetric supercapacitor based on MnO2-polypyrrole hybrid nanofilm, Nanotechnology, 2014, 25, 305401.
14. A carbon modified MnO2 nanosheet array as a stable high-capacitance supercapacitor electrode,Journal of Materials Chemistry A, 2013, 1, 9809-9813
15. Flexible solid-state symmetric supercapacitors based on MnO2 nanofilms with high rate capability and long cyclability, AIP Advances, 2013, 3, 082129.
16. Hydrothermal Synthesis of Bi2WO6 Uniform Hierarchical Microspheres, Crystal Growth & Design, 2007, 7, 1350.
17. Iron Oxide-Based Nanotube Arrays Derived from Sacrificial Template-Accelerated Hydrolysis: Large-Area Design and Reversible Lithium Storage, Chemistry of Materials, 2010, 22, 212.
18. Layered Double Hydroxide Nano- and Microstructures Grown Directly on Metal Substrates and Their Calcined Products for Application as Li-Ion Battery Electrodes, Advanced Functional Materials, 2008, 18, 1448
19. Hydrothermal Synthesis of Single-Crystal Szaibelyite MgBO2(OH) Nanobelt as a New Host Material for Red-Emitting Rare-Earth Ions, Chemistry of Materials, 2008, 20, 250
20. Direct growth of SnO2 nanorod array electrodes for lithium-ion batteries, Journal of Materials Chemistry, 2009, 19, 1859.