Li Dongfang
·Paper Publications
- [21] Li, Dongfang; Wu, Chengda; Zhang, Zhimin.Linearized Galerkin FEMs for Nonlinear Time Fractional Parabolic Problems with Non-smooth Solutions in Time Direction.JOURNAL OF SCIENTIFIC COMPUTING,2019, 403-419
- [22] Li, Dongfang; Cao, Waixiang; Zhang, Chengjian, Zhimin Zhang.Optimal Error Estimates of a Linearized Crank-Nicolson Galerkin FEM for the Kuramoto-Tsuzuki Equations.COMMUNICATIONS IN COMPUTATIONAL PHYSICS,2019,838-854
- [23] Cheng, Xiujun; Duan, Jinqiao; Li, Dongfang.A novel compact ADI scheme for two-dimensional Riesz space fractional nonlinear reaction-diffusion equations.APPLIED MATHEMATICS AND COMPUTATION,2019,452-464
- [24] Zhang, Jiwei; Li, Dongfang; Antoine, Xavier.Efficient Numerical Computation of Time-Fractional Nonlinear Schrodinger Equations in Unbounded Domain.COMMUNICATIONS IN COMPUTATIONAL PHYSICS,2019,(1):218-243
- [25] Hong-Lin Liao, Dongfang Li, Jiwei Zhang, Sharp Error Estimate of the Nonuniform L1 Formula for Linear Reaction-Subdiffusion Equations, SIAM J. Numer. Anal., vol. 56, no. 2, pp. 1112-1133, 2018..
- [26] Dongfang Li, Honglin Liao, Weiwei Sun, Jilu Wang, Jiwei Zhang, Analysis of L1-Galerkin FEMs for time fractional nonlinear parabolic problems, Commu. Comput. Phys., 24 (2018), 86-103..
- [27] Dongfang Li, Jiwei Zhang, Zhimin Zhang, Unconditionally Optimal Error Estimates of a Linearized Galerkin Method for Nonlinear Time Fractional Reaction-Subdiffusion Equations, J. Sci. Comput., vol. 76, no. 2, pp. 848-866, Aug. 2018. .
- [28] Xiaoli Chen, Yana Di, Jinqiao Duan, Dongfang Li, Linearized compact ADI schemes for nonlinear time-fractional Schr\”odinger equations, Appl. Math. Lett., vol. 83, pp. 160-167, Oct. 2018..
- [29] Luigi Brugnano, Chengjian Zhang, Dongfang Li, A class of energy-conserving Hamiltonian boundary value methods for nonlinear Schr\”odinger equation with wave operator, Commun. Nonlinear Sci. Numer. Simul., vol. 60, pp. 33-49, Jul. 2018..
- [30] Xiaoli Chen, Jinqiao Duan, Dongfang Li, A Newton linearized compact finite difference scheme for one class of Sobolev equations, Numer. Meth. Part Differ. Equ., vol. 34, no. 3, pp. 1093-1112, May 2018..