- [1]Ming Wang, Ze Li, Shanlin Huang, Unique continuation inequalities for nonlinear Schrödinger equations based on uncertainty principles. Indiana Univ. Math. J. 72 (2023), no. 1, 133–163..
- [2]Dispersive estimates for the Schrodinger equation with finite rank perturbations, Advances in Mathematics, 426 (2023), Paper No.109105, 91 pp..
- [3]Shanlin Huang, Gengsheng Wang, Ming Wang, Characterizations of stabilizable sets for some parabolic equations in R^n J. Differential Equations 2021 (272) 255-288.
- [4]Shanlin Huang, Gengsheng Wang, Ming Wang, Observable sets, potentials and Schrodinger equations. Comm. Math. Phys. 395 (2022) 1297-1343.
- [5]Tianxiao Huang, Shanlin Huang*, Quan Zheng Unique continuation properties for one dimensional higher order Schrodinger equations.. J. Geom. Anal. 32 (2022), no. 5, Paper No. 167, 34 pp..2022,
- [6]Jingren Qiang, Peng Chen, Shanlin Huang*, Quan Zheng, On some Fourier Multipliers for H^p with restricted smoothness conditions, Journal of Geometric Analysis 2020 (30) 3672-3697.
- [7]Shanlin Huang*, Avy Soffer, Uncertainty principle, minimal escape velocities and observability inequalities for schr\"{o}dinger equations, Amer. J. Math. 143 (2021), no. 3, 753-781..
- [8]Shanlin Huang*, Quan Zheng, Endpoint uniform Sobolev inequalities for elliptic operators with applications,J. Differential Equations 267 (2019), 4609-4625..
- [9]Hua Huang, Shanlin Huang*, Quan Zheng, Zhiwen Duan, The inverse backscattering for Schrödinger operators for potentials with noncompact support, Math Meth Appl Sci., 2019 (42) 3315-3326.
- [10]Shanlin Huang, Ming Wang, Quan Zheng, Zhiwen Duan, L^p estimates for fractional Schr\"{o}dinger operators with Kato class potentials, J. Differential Equations, 2018 (265), 4181-4212..