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Abstract—This paper studies a multi-Intelligent Reflecting
Surfaces (IRSs)-assisted wireless network consisting of multiple
base stations (BSs) serving a set of mobile users. We focus on
the IRS-BS association problem in which multiple BSs compete
with each other for controlling the phase shifts of a limited
number of IRSs to maximize the long-term downlink data rate
for the associated users. We propose MDLBI, a Multi-agent Deep
Reinforcement Learning-based BS-IRS association scheme that
optimizes the BS-IRS association as well as the phase-shift of each
IRS when being associated with different BSs. MDLBI does not
require information exchanging among BSs. Simulation results
show that MDLBI achieves significant performance improvement
and is scalable for large networking systems.

Index Terms—Multi-IRS, Transmit Beamforming, Reflect
Beamforming, BS-IRS association, Reinforcement Learning;

I. INTRODUCTION

Intelligent Reflecting Surface (IRS) is a programmable
meta-surface consisting of a large number of low-cost and pas-
sive reflecting elements. The phase shifts of these elements can
be controlled and optimized to enhance the signal reception
at the receiver. Recent studies suggest that the IRS has the
potential to establish a reflected link with performance that is
comparable to the Line-of-Sight (LoS) link without consuming
any extra energy for signal power amplification [1]. Due to its
potential to improve the wireless communication performance
with relatively low implementation and maintaining costs,
IRS has been promoted by both industry and academia as
the key enabling technology for next generation wireless
communication systems [2].

Recent report suggests that deploying multiple IRSs has the
potential to further improve the signal reflection performance
and alleviate the co-channel interference between different sig-
nal sources [3]. However, enabling multiple IRSs to enhance
the system performance introduces several challenges. First,
it is known that, to maximize communication performance,
an IRS needs to keep track of the channel state information
(CSI) between itself and the signal source as well as the
intended receivers. In the multi-IRS system, each IRS should
not only coordinate with with its own associated sources and
receivers but also carefully coordinate with other IRSs to avoid
introducing the co-channel interference caused by reflecting

signals toward unintended receivers. The total volume of
coordination information among signal sources, IRSs and the
receivers is expected to grow significantly with the number
of IRSs and the number of elements of each IRS. Second, in
a multi-user system consisting of multiple signal sources and
receivers, how to improve the overall system performance by
allocating different IRSs to serve different sources or receivers
is still an open problem. This problem is further exacerbated
by the fact that in mobile network system, users can constantly
move from one location to another. In this case, dynamically
evaluating and adjusting the BS-IRS association is critical
for maximizing the long-term performance of IRS-assisted
wireless system.

In this paper, we consider a mobile networking system
consisting of multiple base stations (BSs), and each offers
wireless services to users within an exclusive service area (e.g.,
cell). Multiple IRSs are deployed throughout the service areas
of BSs to further enhance the downlink data communication
performance from BSs to users. We consider a dynamic en-
vironment in which users can move between different service
areas of BSs at different time. As mentioned earlier, optimizing
the IRS-assisted data communication generally require con-
stantly global coordination among all the BSs, IRSs, as well as
the users. Inspired by recent success in learning-based methods
[4]–[7], we propose MDLBI, a multi-agent deep reinforcement
learning-based BS-IRS association scheme to allow each BS
to compete for IRSs to serve their users. In MDLBI, each
BS can neither know the IRS selection policy of others nor
communicate with other BSs. Each BS, however, can learn
and maintain a parameterized actor function which maps its
locally observed states into its optimal decision. MDLBI is
easy to implement and scalable to large networking systems.
Extensive simulation has been conducted. Our results show
that MDLBI converges well compared to existing benchmark
methods and can be directly applied into networks with a large
number of BSs and IRSs. To the best of our knowledge, this
is the first work to study the BS-IRS association problem in
a dynamic networking environment.

The reminder of this paper is organized as follows. Section
II presents the related work. System model and problem for-



mulation are described in Section III. We present the proposed
MDLBI in Section IV. The simulation results are presented in
Section V and paper is concluded in Section VI.

II. RELATED WORK

Single IRS-assited wireless network: Most existing works
on IRS-assisted wireless networks focus on optimizing the
single-IRS scenarios. Particularly, in [8], the authors applied
IRS to minimized the total transmit power at the BS. A joint
optimization problem of both transmit beamforming of active
BS antennas and the reflect beamforming of passive phase
shifters has been investigated. The authors in [4] applied
deep reinforcement learning to optimize the overall energy
efficiency for IRS powered by harvested energy. The authors in
[5] adopted a deep reinforcement learning method to optimize
the transmit beamforming and reflect beamforming in dynamic
environment. The authors in [9] proposed a novel phase shift
solution for IRS to minimize the co-channel interference for
multiple receivers sharing the same spectrum. Recently, IRS
is also utilized to maximize the secrecy rate of the legitimate
communication link [10] and extend the wireless coverage
with ultra-reliable low-latency communication services [11].

Multi-IRS-assisted wireless network: Multi-IRS-assisted
network has attracted significant interest due to its potential
to significantly improve the spectrum and energy efficiency
[12]–[16]. For example, the authors in [12] studied the joint
optimization problem of the transmit beamforming, reflect
beamforming, and the set of active IRSs to minimize both
the transmit power consumption of the BS and circuit power
consumption of the IRSs. The authors in [13] investigated
the joint design of transmit beamforming and artificial noise
covariance matrix at an access point and the reflect beam-
forming at the IRSs to maximize the system sum rate while
limiting the maximum information leakage at the potential
eavesdroppers. The joint active and passive beamforming
optimization problem for IRS-assisted simultaneous wireless
information and power transfer (SWIPT) is studied in [14].
Different from the full knowledge channel state information
(CIS) assumption in [12]–[14], the authors in [15] designed a
transmit and reflect beamforming solution based on the imper-
fect location information of users. In [16], the authors performs
an initial investigation on the IRS association problem, where
the dynamics of environment is not considered.

III. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model

We consider a multiple IRS-assisted network consisting of
M BSs, each has Nb antennas, that provides services to K

single-antenna users in the considered area, as shown in Fig. 1.
Let M = {b1, b2, . . . , bM} and K = {1, 2, . . . ,K} be the sets
of BSs and users, respectively. Each BS covers an exclusive
sub-region in the service area. We consider a mobile network
in which users can move from one sub-region to another. The

user mobility can be regarded as a slotted process in which
the set of users located in the sub-region of each BS can be
considered as fixed within each time slot, i.e., we use Cm,t to
denote as the set of users served by BS bm during time slot t
and ∪m∈MCm,t = K. To simplify our description, we focus on
the downlink communication and the main objective of each
BS is to maximize the data rates from itself to the users. We
assume a proper inter-cell interference cancellation mechanism
has been adopted between BSs and thus the data transmission
of each BS does not cause any noticeable interference to the
users located in the coverage area of other BSs.

Suppose L IRSs are deployed in the service area that can be
utilized by BSs to improve the downlink data communication
performances of BSs. Let L = {1, 2, . . . , L} be the set of all
the IRSs and Nl be the number of passive reflecting elements
of the lth IRS for l ∈ L. BSs compete for the control of
IRSs to serve their users. We assume each IRS can only serve
a single BS in each time slot. Each BS, however, can take
control of multiple IRSs. Nm,t denotes the IRS set controlled
by BS bm during time slot t and we have ∪m∈MNm,t = L.
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Fig. 1. System Model.

Let Gm,l ∈ CNl×Nb and hHl,k ∈ C1×Nl to be the complex
equivalent baseband channel vectors between each BS bm
and the lth IRS, and between the lth IRS and the kth user,
respectively. The channel gain between BS bm and the kth user
is given by Hm,k ∈ C1×Nb . We assume Hm,k, Gm,l, and hHl,k
can be regarded as constants during each transmission time
slot [12]. Furthermore, the channel state information (CSI) is
perfectly available at the BSs as assumed in [5], [8], [12],
[13]. Let Φl = diag

{[
ejθ

1
l , . . . , ejθ

Nl
l

]}
be the phase shift

matrix of the lth IRS, and θel ∈ [0, 2π] be the eth phase shift
of the lth IRS, where diag{·} denotes diagonal matrix and
e ∈ {1, . . . , Nl}. We write Φ = blkdiag (Φ1,Φ2, . . . ,Φl) as
the phase shift matrices of all IRSs, where blkdiag{·} denotes
block diagonal matrix. Let nk ∼ CN

(
0, σ2

k

)
be the additive

white Gaussian noise where σ2
k is the received noise power of

user k.
Let A = blkdiag [A1,A2, . . . ,AM ] be the BS-IRS associ-



ation matrix, where Am ∈ CK×L is the BS-IRS association
matrix of the mth BS. [Am]k′,l′ is a binary variable specifying
the association relationship among the mth BS, the k′th user,
and the l′th IRS. In other words, [Am]k′,l′ = 1 means
that the mth BS bm allocates the l′th IRS to assist the
downlink communication to the k′th user, where l′ ∈ Nm
and k′ ∈ Cm. When focusing on a specific time slot t,
we write Nm,t and Cm,t as Nm and Cm for simplification.
Since each user is assumed to be served by a single IRS,
we have

∑
l′∈Nm [Am]k′,l′ = 1,∀k′ ∈ Cm. We can use

Φk′ =
∑
l′∈LΦ′l1{[Am]k′,l′=1} to represent the phase shift

matrix of the single IRS allocated to the k′th user by the mth
BS bm, where 1{.} is the indicator function.

The received signal at the k′th user served by BS bm can
be written as

ym,k′ = Hm,k′x + hHl,k′Φk′Gm,lx + nk′ , (1)

where (.)
H is conjugate transpose.

The transmitted signal of the BS bm can be expressed as
x =

∑
k′∈Nm wm,k′sk′ , where sk′ denotes the desired signal

of the k′th user with sk′ ∼ CN (0, 1), and wm,k′ ∈ CNb×1 is
the transmit beamforming vector for the k′th user. Each BS
has a maximum transmit power constraint:∑

k′∈Cm

‖wm,k′‖2 ≤ Pmax,∀m ∈M. (2)

By substituting x into (1), we have

ym,k′ = Hm,k′

∑
i∈Nm

wm,isi+hHl,k′Φk′Gm,l

∑
i∈Nm

wm,isi+nk′ .

(3)
Accordingly, the SINR at the kth user served by BS bm is

given by

rm,k′ = log

1 +

∣∣∣Hm,k′wk′ + hHl,k′Φk′Gm,k′wk′

∣∣∣2∑K
i 6=k′

∣∣∣hHl,k′Φk′Gm,k′
∑
i∈Nm wi

∣∣∣2 + σ2
k′

 .

(4)
The achievable sum rate of a multiple IRS-assisted wireless

communication system is given by

R =
∑
m∈M

∑
k′∈Cm

rm,k′ . (5)

B. Problem Formulation

Given the defined system model, our goal is to maximize the
sum rate of the multiple IRS-assisted communication system
by jointly optimizing the user scheduling and association
matrix A, phase shifts matrix Φ and transmit beamforming

matrix w, i.e., the joint optimizing problem can be written as
follows:

(P) : max
w,Φ,A

R, (6a)

s.t.
∑
k′∈Cm

‖wm,k′‖2 ≤ Pmax,∀m ∈M, (6b)∣∣∣eθml′ ∣∣∣ = 1,∀m ∈M, l′ ∈ Nm, (6c)

[Am]k′,l′ ∈ {0, 1},∀m ∈M, l′ ∈ Nm, k′ ∈ Cm. (6d)

We can observe that the objective function of problem (P) is
generally non concave and the three optimization variables w,
Φ, and A are coupled with each other which make the problem
difficult to solve. Besides, the constraint (6c) is highly non-
convex as the phase of each element is forced to have a unit
magnitude. In the rest of the paper, we propose a Multi-agent
Deep Deterministic Policy Gradient (MDDPG)-based solution,
called MDLBI to jointly optimize transmit beamforming w,
reflect beamforming Φ, and BS-IRS association A.

IV. MULTI-AGENT DDPG FOR THE MULTIPLE

IRSS-ASSISTED COMMUNICATION SYSTEM

In this section, we introduce a MDDPG-based solution,
called MDLBI for optimizing the multiple IRSs-assisted com-
munication system.

In this method, each BS can observe the state including the
channel information (i.e., Hm,k′ , Gm,l′ , hHl′,k′ , and leakaged
control signal, ∀l′ ∈ Nm,∀k′ ∈ Cm) , output the actions
(i.e., phase shifts Φl′ ,∀l′ ∈ Nm, the transmit beamforming
wm,∀m ∈M, and the association matrix Am,∀m ∈M), and
obtain reward (i.e., sum rate

∑
k′∈Cm rk′ ) during each time

slot t, as shown in Fig. 2.
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Fig. 2. MDDPG based optimization for the multiple IRSs-assisted commu-
nication system

One of the main advantages for adopting MDDPG-based
method to address problem (P) is that MDDPG is applicable
to continuous and high-dimensional action spaces. This makes
it suitable for our problem, in which the phase shifts Φ are
continuous and the association matrix A is high-dimensional.



DDPG is a deep reinforcement learning algorithm that
could operate over continuous action space by maintaining an
actor network to specify the current policy deterministically
by mapping the observed state to a specific action. Besides,
DDPG requires fewer steps of experiences than Deep Q
Network (DQN) to find optimal solutions in the Atari domain
[17]. Under the actor-critic architecture, DDPG maintains two
networks, namely the actor network and the critic network.
The critic network is trained to approximate the Q-table using
neural networks without the curse of dimension, while the
actor network is trained to generate a deterministic policy
instead of policy gradient. Furthermore, target networks are
also adopted to improve the stability [18]. However, DDPG
is not specialized for the multi-agent environment since the
environment is non-stationary from the perspective of each
agent (i.e. BS). By utilizing of the control signal between the
BSs and IRSs, we extend DDPG into a multi-agent version for
our task. More specifically, there are four sub-nets, namely
the critic network Qµθ′m

(om, am), the target critic network

Qµ
′

θ′ (om, am), the actor network µθm(om) (abbreviated as µm),
and the target actor network µ′θ′(om). We use θc, θm′ , θm, and
θ′ to denote the parameters of the critic network, the actor
network, and the target networks during certain time slots,
respectively. Note that am is the action of bm at the current
time slot, and om is the current state of BS bm. It contains
two parts om = (sm, ρ−m), where sm is the local state of
physical environments (i.e., all channel state information in the
sub-region of bm ) and ρ−m represents the other BS agents’
strategies to dominate the IRS sets. This observation of other
BSs’ strategies to choose certain IRS sets can be realized by
capturing the leakage of control siganls between other BSs and
IRSs, since the control of IRS are typically connected with the
BS through wireless [2].

With the above notations, we formally describe the con-
struction of the model in detail as follows.
State Space: om ∈ Om is the state of bm, which is determined
by the physical environment (direct channel Hm,k, channel
between bm and the lth IRS Gm,l and channel between the lth
IRS and the kth user hHl,k,∀l ∈ Nm,∀k ∈ Cm) and the other
BS agents’ strategies ρ−m. Since neural network can only
take real numbers and the channel information are complex,
we separate the real and imaginary parts of the channel
information as independent inputs. There are 2card(Cm)Nb,
2card(Nm)NbNl, 2card(Nm)Nlcard(Cm) and (M − 1)L

entries respectively contributed by Hm,k, Gm,l, hHl,k and ρ−m,
where card(·) represents the cardinality of a set. Hence, the
total number of entries for sate action is Ds = 2card(Cm)Nb+
2card(Nm)NbNl + 2card(Nm)Nlcard(Cm) + (M − 1)L.
Action Space: am ∈ Am is the action at current state,
which is constructed by phase shifts Φl,∀l ∈ Nm, transmit
beamforming vectors wk,∀k ∈ Cm and association matrix
Am. Likewise, there are 2Nbcard(Cm), card(Nm)Nl and L
entries of action contributed by wk,∀k ∈ Cm, Φl,∀l ∈ Nm

and Am, respectively. Hence, the total number of entries for
action space is Da = 2Nbcard(Cm) + card(Nm)Nl + L.
Reward: rm represents the instant reward defined as the
sum rate of users in the sub-region of bm, which can be
obtained by knowing the other BS agents’ strategies ρ−m,
the instantaneous channel information Hm,k,∀k, Gm,l∀l and
hHl,k′∀l, k′ and the action (i.e., wm,k′ ,∀k′, Φl,∀l ∈ Nm and
Am) obtained from the actor network.

The expected reward of each BS bm is given by

J (θm) = Es∼pµ,am∼µm [∇θm logµm (am | om)Qµm (om, am)] ,

(7)
where pµ is the state distribution.

Considering the continuous of action space, the gradient for
the parameter θm of the deterministic policy µθm (abbreviated
µm) is given as

∇θmJ (µm) =Eo∼D [∇θmµm (am | om)

·∇amQµm (om)|am=µm(om)

] (8)

where D is the experience buffer contain trumples
(om, o

′
m, rm), recording the experiences of all the agent BS.

Then the critic network is updated by minimizing the
following loss function:

L (θm) = Eom,o′m,rm
[
(Qµm (om)− y)2

]
, (9)

y = rm + γQµ′

m (om)
∣∣∣
ρ−m

, (10)

where µ′ is the set of target policies.
Finally, DDPG softly updates the target networks with a

small instant τ � 1, i.e.,

θ′ ← τθm + (1− τ)θ′. (11)

This means the target networks are changed in a much
slower speed than the actor and critic networks, which greatly
improving the stability of the learning [17].

Given the set of IRS Nm, the BS bm interacts with the
environment in a trial-and-error manner to optimize the sum
rate of user set Cm in its sub-region. During each time step t
of an episode, each BS (e.g. bm) observes the current state om,
applies a action am defined by policy µθm to the environment,
and obtains the instant reward rm.

The details of the proposed algorithm are presented in
Algorithm 1. At the beginning of the algorithm, parameters
of the BSs and environment are initialized. In this paper, the
experience buffer D, the other users’ trategies ρ−m, the actor
network parameters θm, the target network parameters θ′, the
critic network parameters θ′m and the association matrix A

are randomly initialized. And the transmit beamforming w,
the phase shifts Φ are simply initialized as identity matrix.
After initialization, the new experience (st, at, rt+1, st+1)

are collected into the experience buffer B (i.e., the step 4-8).
A minibatch of experience with size w is randomly sampled



from B, i.e., step 9. The step 10 and 11 describe the update
of the critic network and the actor network. Finally, the target
networks are updated, i.e., the step 12. The algorithm run over
N episodes and each episode with T time steps. During each
episode, the algorithm terminates whenever it converges or
finishes the T time steps.

Algorithm 1 Multi-agent DDPG based optimization with IRS-
BS association bm
Output: am = {wm,Φl∀l ∈ Nm,Ak}, Q value function
Initialization: experience buffer D with size Dl, the actor
network parameter θm, the target networks parameter θ′, the
critic network parameter θ′m, the transmit beamforming wm,
the phase shifts Φl,∀l ∈ Nm and the association matrix Am;

1: for episode = 0, 1, 2, . . . , N − 1 do
2: Collect the channel information Hm,k,∀k ∈ Cm,

Gm,l,∀l ∈ Nm and hHl,k,∀l ∈ Nm,∀k ∈ Cm for the
nth episode to obtain the first state s0;

3: for t = 0, 1, 2, . . . , T − 1 do
4: Obtain the IRS set Cm,t dominate by the BS bm
5: Observe action am = {wm,Φl∀l ∈ Nm,t,Ak}=
µ(θm | om) from the actor network;

6: Observe the next state o′m given action am;
7: Obtain the reward rm;
8: Store the experience (om, am, rm, o

′
m) in the ex-

perience buffer D;
9: Sample a random minibatch of W transitions from

the experience buffer D;
10: Update the critic network by minimizing the loss

as described in Eq. (9);
11: Update the actor network using the policy gradient

as described in Eq. (8);
12: Update the target networks using Eq. (11);
13: end for
14: end for

V. STIMULATION AND RESULTS

In this section, we evaluate the performance of the proposed
MDDPG-based algorithm. All the channels are assumed to
suffer from both path loss and Rayleigh fading. As in [12],
[19], the path loss exponents of the BS-IRS channel and the
IRS-user channel are set as 2.5 and 2.4, respectively. The
actor and critic network are both fully connected deep neural
network with one input layer, two hidden layers and an output
layer. The output layer of the actor network has the same
dimension as the action and we use tanh function as the
activation function. The output of the critic network is a scalar
with one dimension. The activation function of all the hidden
layers is Relu function.

In Fig.3, we investigate the convergence performance of
MDLBI compared to the original DDPG-based solution. Since
the batch sampling is utilized, we use time as the x axis instead

TABLE I
SIMULATION CONGIGURATION

Parameters Description Value

γ Discount factor 0.99

µc Learning rate of the actor 0.0001

µa Learning rate of the critic 0.001

τ Soft target update factor 0.001

D Experience buffer Size 10000

N Number of episodes 5000

T Maximum time steps of each episode 800

W Batch size 64

of time steps. We can observe that the proposed solution
converges much faster and can obtain a higher sum rate at
around 8.5 bps/Hz. This means that the proposed MDLBI
could improve the transmit beamforming compared to DDPG-
based method. In practical system, each BS could utilize the
leakage control signals of IRSs sent by other BSs to estimate
their competition over the IRSs. In this way, the possibility of
collisions between BSs when competing for the same IRS can
be reduced.
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Fig. 3. Instant reward (dB) as a function of time

In Fig.4, we consider the instant reward (i.e. sum rate) under
different system settings L = {1, 2, 4},K = {10, 30}. The
number of BS M is fixed to 2. It can be observed that the
sum rate of the service area increases with the number of
IRSs. By comparing cases with {K = 10, L = 1} and {K =

30, L = 1}, we can observe that the performance enhancement
induced by a single IRS increased a little with the number of
served users. However, when more IRSs can be deployed in
the service area, such as cased with {K = 30, L = 2} and
{K = 30, L = 4}, the sum rate could be further improved.
This result verifies that deploying more number of IRSs even
in a distributed manner could improve the system capacity.

Fig. 5 compares the sum rate of our proposed method to
that of a fixed BS-IRS association solution. It can be observed



that although the optimization with a fixed association strategy
may obtain higher sum rate at the beginning of the time of
consideration, the overall system performance may fluctuate
with time due to the user mobility.
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Fig. 4. Instant reward (dB) as a function of time under different system
settings
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VI. CONCLUSION

In this paper, we investigate the IRS-BS association problem
in a mobile network consisting of multiple BSs serving a
set of mobile users assisted by multiple IRSs. In order to
maximize the long-term data communication performance for
the associated users located in their service coverage areas,
the BSs compete with each other for controlling the phase
shift of a limited number of IRSs. A multi-agent reinforcement
learning-based solution, named as MDLBI, is proposed to op-
timize the BS-IRS association and the phase-shift of each IRS.
The MDLBI achieves the maximum downlink communication
sum rate without requiring any data exchange among BSs.
Extensive simulations have been conducted to demonstrate that
MDLBI achieves significant performance improvement even
when being implemented in large networking systems.
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