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On the Diversity-Multiplexing Tradeoff of an
Improved Amplify-and-forward Relaying Strategy

Yong Xiao, Luiz A. DaSilva and Xiao Juan Zhang

Abstract—The diversity-multiplexing tradeoff (DMT) is one
of the most important criteria to evaluate the performance of
wireless relay networks. Previous work shows that, compared
to decode-and-forward (DF) and estimate-and-forward (EF) re-
laying protocols, amplify-and-forward (AF) achieves the worst
DMT and cannot reach the DMT upper bound. In this paper,
we propose a new relaying protocol, called dynamic AF (DAF),
which allows the relay to adapt the receiving and forwarding
time durations to the channel conditions. We show that DAF
achieves the DMT upper bound when the multiplexing gain r is
between 0 and α, where 0 < α < 0.5 is a constant set according
to the relaying channel conditions.

I. INTRODUCTION

The diversity and multiplexing tradeoff (DMT) is an ef-
fective tool to characterize the performance of multi-antenna
communication systems [1]–[3]. Recently, a relay-based tech-
nique called cooperative diversity has been introduced to allow
multiple users to help each other to form a virtual multiple-
antenna system [4]. It was shown that, under certain condi-
tions, cooperative diversity can achieve similar performance
as MIMO systems without requiring a physical multi-antenna
array to be installed on each node [5]–[7].

In this paper, we consider a single-relay channel [8] in
which a source transmits information to a destination with
the help of a relay. Three main relaying protocols have been
proposed for this channel. The first one is decode-and-forward
(DF) [9], where the relay decodes all the received signals and
sends the re-encoded symbols to the destination. The second
one is called estimate-and-forward (EF) [10], in which the
relay forwards an “estimated” version of its received signal.
Amplify-and-forward (AF) [11] is the third one, in which
the relay directly forwards a scaled version of its received
signal to the destination. Generally speaking, AF has the
lowest computational complexity among the three protocols.
However, it also suffers from some performance loss compared
to DF and EF. Specifically, it was proved in [5] that EF is the
only protocol that can achieve the DMT upper bound of the
MIMO system when the multiplexing gain r is between 0 and
1. The dynamic DF (DDF) proposed in [6] can achieve the
same upper bound only when 0 ≤ r < 0.5. It was shown
in [12] that the achievable DMT of orthogonal AF (OAF),
in which the source remains silent when the relay forwards
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the signal, is much lower than the MIMO DMT upper bound.
To improve the performance of OAF, the work in [6] studied
the nonorthogonal AF (NAF) and proved that, by allowing
the source to transmit during the entire transmission process,
the DMT of OAF can be greatly improved. A new protocol,
called slotted AF (SAF), was later proposed in [13], which
can further improve the DMT of NAF for multiple-relay cases.
Nevertheless, it was reported that even the genie-aided SAF,
where the relay is assumed to know the coded source signal
before transmission, cannot achieve the MIMO DMT upper
bound, as EF and DDF do.

In this paper, we propose a new AF protocol, namely
dynamic AF (DAF). In the proposed protocol, the relay adjusts
the time durations of the receiving and forwarding operations
according to the instantaneous channel conditions. The idea of
improving the performance of AF by adjusting the transmitting
and receiving intervals has been previously considered in
[14], in which the bursty amplify-and-forward (BAF) protocol
was proposed to let the transmit power of the source be
concentrated and transmitted in a very short time to achieve
a bursty transmission. The paper proved that if both the time
fraction of the source transmission and the received signal-
to-noise ratio of the destination approach zero (high source
transmit power and low SNR), the optimal outage capacity of
the relay channel can be achieved.

The DAF we propose in this paper is fundamentally differ-
ent from BAF in the following senses: 1) In BAF, the transmit
power of the source approaches infinity as the transmit interval
of the source goes to zero. However, high transmit power is
difficult to implement in a wireless network because of the
physical power limitation of the mobile devices as well as
the interference constraints of other users in the system. 2)
BAF cannot achieve the DMT upper bound of DAF, DDF,
and EF because it assumes the source stops transmission after
the bursty transmission. DAF, as we will show, can achieve the
DMT upper bound. 3) In addition, in BAF, the source needs to
be coordinated with the relay to ensure the relay knows when
to stop receiving signals from the source. In DAF, however,
the relay will adjust its receiving and relaying time interval
according to its own measurement of the channel gain, without
coordination or instruction from the source.

Another result which is related to our paper is presented
in [15], which extends the AF protocol to a large multi-hop
network to show that AF is optimal in terms of diversity order
when the SNR is large. The work in [15] assumes the multi-
hop relaying operation has been pre-scheduled and focuses on
the asymptotic performance of large networks. In this paper,
however, we focus on a single-relay channel and characterize
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Fig. 1. Network model for the single-relay channel.

the performance of DAF in a single-relay channel. We prove
that DAF can achieve the DMT upper bound if 0 ≤ r ≤ α ≤
0.5, where α is a constant that depends on the conditions of
the source-to-relay and relay-to-destination channels. To the
best of our knowledge, this is the only AF protocol that is
reported to achieve the MIMO DMT upper bound.

The rest of this paper is organized as follows. The network
model and background information are presented in section II.
The main result and the proof are reported in sections III and
V, respectively. Section IV provides discussion of the main
results. This paper is concluded in section VI.

II. NETWORK MODEL

Consider a single-relay system consisting of a source, a
relay and a destination, labeled as 1, 2 and 3, respectively,
each of which employs a single antenna, as shown in Fig. 1.
The relay works in half-duplex mode and hence the entire
transmission time can be divided into two frames: relay
receiving frame (RR) and relay transmitting frame (RT). We
consider the transmission of one codeword with length of B
symbol intervals. All channels experience Rayleigh flat fading
and the channel gains remain constant during each codeword.

Assume the relay listens during the first ⌊αB⌋ symbol
intervals and starts to forward signals during the remaining
B − ⌊αB⌋ symbol intervals. By denoting the transmitted and
received signals as x and y, respectively, we can write the
signals received by the destination and relay during the ith
symbol interval, for 1 ≤ i ≤ ⌊αB⌋, as

y3,i = h13x1,i + z3,i, (1)
y2,i = h12x1,i + z2,i, (2)

where z2,i and z3,i are zero-mean Gaussian random variables
with variances σ2 and σ3, respectively. We assume the signals
sent by the source and relay are under equal average power
constraints and let the average power for source and relay be
w. We also denote the signal to noise ratio at the destination
as SNR = w

σ3
.

During the RT frame, the relay randomly picks up the signal
received in one symbol interval (let us call it the ith symbol
interval) during the previous frame and forwards a weighed
version of this signal to the destination. The signal observed by

the destination during the jth symbol interval, for ⌊αB⌋+1 ≤
j ≤ B, in the RT frame is given by

y3,j = h13x1,j + h23x2,j + z3,j

= h13x1,j + h23θy2,i + z3,j

= h13x1,j + θh23h12x1,i + θh23z2,i + z3,j (3)

where θ is the weighing coefficient of the relay to ensure the
average power constraint is satisfied. In this paper, we consider
the fixed-gain AF protocol and assume θ is a constant.

A coding strategy {R(SNR)} is said to achieve spatial
multiplexing gain r and diversity gain d if the data rate
R (SNR) and the average error probability Pre (SNR) satisfy
the following conditions [1, Definition 1],

lim
SNR→∞

R (SNR)

log (SNR)
= r, (4)

lim
SNR→∞

log Pre (SNR)

log (SNR)
= −d. (5)

To better illustrate the performance of AF, we list the
relevant previously reported results. In [5], the upper bound
for the DMT of the single-relay channel achieved by EF is
proven to be

dUpper(r) = (2− 2r)
+
. (6)

where (·)+ = max{·, 0}.
This equals the DMT upper bound for a 2 by 1 MIMO

system [1].
In [12], the achievable DMT for the OAF is shown to be

dOAF (r) = 2 (1− 2r)
+
. (7)

In [6], it was proven that currently the best DMT result for
the AF-based half-duplex single-relay channel is achieved by
NAF, for which the DMT is given by

dNAF (r) = (1− r) + (1− 2r)
+
. (8)

III. DYNAMIC AMPLIFY-AND-FORWARD (DAF)

The operation of DAF is described as follows. The time
durations of the RR and RT frames are denoted as ⌊αB⌋
and B − ⌊αB⌋ symbol intervals, respectively. During the
RR frame, the source transmits signals to both the relay and
the destination and, during the RT frame, both source and
relay communicate with the destination. Differently from NAF
or SAF, in DAF we assume the listening time duration of
the relay depends on the instantaneous channel gains of its
channel. More specifically, during the RR frame, the source
transmits its information to the relay at a rate R and the relay
listens until the mutual information between its received signal
and the source signal exceeds BR. From the above protocol
description, we have that the time fraction used by the relay
to listen should be

α ≥ min

1,
r log(SNR)

log
(
1 + |h12|2 w

σ2

)
 . (9)

During the RT frame, the relay tries to ensure the destination
can obtain exactly the same amount of information it received
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during the first ⌊αB⌋ symbol intervals. To achieve this, the
relay needs to make sure the mutual information between its
received signal and the source signal is equal to that between
its forwarded signal and the signals received by the destination
from the relay. We assume the relay uses the distributed
amplify-and-forward method [16] to let its forwarded signal
be independent from the signals received by the destination
during the RR frame, and the destination only performs the
decoding after it receives all the signals sent by the source and
relay. That is, α needs to satisfy the following condition,

α =
M3

M2 +M3
, (10)

where M2 and M3 are the channel capacity between the source
and relay and between the relay and destination, i.e.,

M2 = log

(
1 +

|h12|2w
σ2

)
,

M3 = log

(
1 +

θ2|h12|2|h23|2w
σ3 + θ2|h23|2σ2

)
. (11)

Our main result is given as follows.

Theorem 1. DAF achieves the DMT upper bound dDAF (r) =
2− 2r when 0 ≤ r ≤ α < 0.5, where α is given in (10).

IV. DISCUSSION

Figure 2 compares the DMT curves for DAF, OAF, NAF,
and direct transmission. We observe that DAF is optimal when
multiplexing gain r satisfies 0 ≤ r < α. This is because, in
this case, the relay can receive all the signals sent by the
source and use equation (10) to make sure the destination can
successfully obtain these signals from the relay.

However, our protocol is limited by the condition 0 ≤ r ≤
α < 0.5. In other words, if r > α, the relay can only observe
part of the signals sent by the source and hence DAF cannot
be applied. In this case, the relay can use other AF protocols
such as NAF or OAF, to forward its signals. Since α is always
less than 0.5, the relay should repeatedly forward a part of or
all the received signals in the RT frame. How to choose these
repeated signals for DAF is a topic for our future work.

Note that, similarly to DDF, in order to decode the signal
the destination needs to know the weighting coefficients of
the relay, the relay listening time duration, and the channel
gains between the relay and destination, between the source
and destination, and between the source and relay. This can
be done by allowing the source to embed a training code into
its transmitted signal. In addition, the relay in DAF is also
required to observe the channel gains of its channels in order
to determine the value of α. This can be done by embedding
training codes in the signal transmitted by the source and the
destination feedback signal.

V. PROOF OF THEOREM 1

Following the same line as [1], we assume the source 1
uses a Gaussian random code with codeword length B and
the destination uses a maximum likelihood decoder to process
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Fig. 2. DMT comparisons among different relaying protocols: we assume
α = 1/3 and, if DAF cannot be applied, it will turn to NAF.

its received signals. For data rate R = r log(SNR), the error
probability at the destination is given by

Pre(SNR) = Pro(R)Pre|o(SNR) + Pre,oc(SNR)

≤ Pro(R) + Pre,oc(SNR) (12)

where e and o denote error and outage events, respectively. As
proven in [1], if the codeword length B is large enough, the
probability of error conditioned on the channel without outage
is negligible. We then focus on the outage probability as fol-
lows. An outage occurs if the mutual information between the
source and the destination is less than a rate R = r log(SNR)
and hence we have,

Pro(R) = (13)
Pr (I(X1,1, ..., X1,B ;Y3,1, ..., Y3,B) ≤ r log (SNR))

Assume the relay 2 uses the distributed amplify-and-forward
method [16] to relay its received signal and hence the signals
observed by the destination in RR and RT frames are inde-
pendent. Thus, we have

I(X1,1, ..., X1,B ;Y3,1, ..., Y3,B)

= I(X1,1, ..., X1,⌊αB⌋;Y3,1, ..., Y3,⌊αB⌋)

+I(X1,⌊αB⌋+1, ..., X1,B , X2,⌊αB⌋+1, ..., X2,B ;

Y3,⌊αB⌋+1, ..., Y3,B)

= (⌊αB⌋) log
(
1 +

|h13|2w
σ3

)
(14)

+(B − ⌊αB⌋) log
(
1 +

|h13|2w + θ|h12|2|h23|2w
σ3 + |h23|2σ2

)
Defining v12, v23 and v13 as the exponential orders of
1

|h12|2 ,
1

|h23|2 and 1
|h13|2 , respectively, and substituting (14) into

(13), we have

Pro(R)
.
= SNRdDAF (r) (15)

where

dDAF (r) = inf
v12,v13,v23∈O+

v13 + v12 + v23, (16)
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and

O+ =
{
(v12, v23, v13) ∈ R3+|α (1− v13)

+ (17)

+(1− α) [1−min {(v12 + v23) , v13}]+ ≤ r
}
.

From (10), we have

α(1− v12)
+ = (1− α) [1− (v12 + v23)]

+

⇒ v12 + v23 = 1− α(1− v12)

1− α
. (18)

Substituting (18) into (16), we have

dDAF (r) = inf
v12,v23,v13∈O+

v13 +
α

1− α
v12 +

1− 2α

1− α
(19)

where

O+ =
{
(v12, v23, v13) ∈ R3+|α (1− v13)

+ (20)

+max
{
α (1− v12)

+
, (1− α) (1− v13)

+
}
≤ r

}
.

It can be easily shown that if either v12 > 1 or v13 > 1,
the resulting diversity order will be higher than the theoretical
MIMO upper bound defined in [1]. Hence, we only consider
the cases in which both v12 and v13 are between 0 and 1. Let
us consider two cases as follows.

1) If α(1 − v12)
+ ≥ (1 − α)(1 − v13)

+, we have α(1 −
v13)

+ + α(1 − v12)
+ ≤ r. By combining these two

inequalities, we can calculate the feasible regions of v12
and v13 to be 1− 1−α

α r ≤ v12 < 1 and 1− r ≤ v13 < 1.
Substituting the lowest values of v12 and v13 into (19),
we have dDAF (r) = 2− 2r,

2) If (1−α)(1− v13)
+ ≥ α(1− v12)

+, we also have v13 >
1− r. Using similar methods as case 1), we have v12 ≥
1− 1−α

α r. Hence, we obtain dDAF (r) = 2− 2r.
Note that from (10), we have 0.5 > α ≥ r. In other words,

the diversity order dDAF (r) = 2− 2r can only be achieved if
0.5 > α ≥ r ≥ 0. This concludes the proof.

VI. CONCLUSION

In this letter, we have introduced a new AF relaying proto-
col, called dynamic AF (DAF). In DAF, the relay adjusts the
durations of the receiving and forwarding times according to
the relay channel conditions. We prove that DAF can achieve
the DMT upper bound if 0 ≤ r ≤ α < 0.5.
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