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Abstract—This paper studies the power control problem for
spectrum sharing based cognitive radio (CR) networks with
multiple secondary source-to-destination (SD) pairs. A simple
distributed algorithm is proposed for the secondary users (SUs)
to iteratively adjust their transmit powers to improve the
performance of the network. The proposed algorithm does not
require each SU (or PU) to negotiate with other SUs (or
PUs) during the communication. It is proved that the proposed
algorithm can obtain a time average performance as good as that
achieved when the Nash equilibrium (NE) is chosen in hindsight.
More specifically, the average performance of CR networks will
converge to an ϵ-Nash equilibrium at a rate of Tϵ = O

(
exp

(
1
ϵ

))
.

A sub-optimal algorithm is also introduced to further improve
the convergence rate to Tϵ′

log Tϵ′
= O

(
1
ϵ′

)
. Numerical results are

presented to show the performance of the proposed algorithm
under different settings.

I. INTRODUCTION

Cognitive radio (CR) is one of the main technologies to
solve the spectrum under-utilization problem in future gener-
ations of wireless systems. In CR networks, the unlicensed
users, called secondary users (SU), can access the spectrum
which is unoccupied or ineffectively used by the licensed
users, called primary users (PU). In this paper, we focus on
spatial spectrum sharing (SSS) based CR networks (spectrum
underlay approach) [1] in which SUs and PUs can transmit
signals at the same time over the same spectrum. In this
system, maximizing the performance of SUs and simultane-
ously maintaining the interference powers of PUs under the
acceptable levels, called the interference temperature limit [1],
is still a challenging task.

In [2], it was observed that, if SUs employ the power
control methods, i.e., to decrease (or increase) their transmit
powers when the conditions of SU-to-PU channels are “good”
(or “bad”), the spectrum utilization efficiency and system
performance can be greatly improved. However, most of the
previously reported work neglects the interference among SUs
or PUs and assumes each SU can have the global information,
i.e., the states of other SUs and the channel gains of all
channels in the network. This requires each SU to handle high
complexity computation and unrealistic channel estimation,
which may impossible for many practical systems. More
specifically, in [2] [3], the optimal power control methods
for the case of one secondary source-to-destination (SD) pair
sharing the spectrum with one PU were derived by assuming

Y. Xiao and G. Bi are with the School of Electrical and Electron-
ic Engineering, Nanyang Technological University, Singapore (email: xi-
ao0021@e.ntu.edu.sg, egbi@ntu.edu.sg).

D. Niyato is with the School of Computer Engineering, Nanyang Techno-
logical University, Singapore (email: dniyato@ntu.edu.sg).

the transmitters to know the instantaneous channel gains of
both SU-to-SU and SU-to-PU channels. The results were
extended to CR networks with multiple SD pairs [4] and multi-
hop relaying SUs [5] based on the similar assumptions.

Motivated by these limitations, in this paper, a game theoret-
ic framework is established to solve the power control problem
of distributed CR networks with multiple secondary SD pairs
and PUs. A simple distributed algorithm is proposed to achieve
the following advantages: 1) the operations of each SU are
simple and fully distributed, i.e., both SUs and PUs do not
know the global information, and there is no central controller
to manage the network. In addition, in our setting, each PU
broadcasts the same information to all SUs and each SU cannot
communicate with others or obtain specific instructions from
PUs, 2) the computational complexity of each SU is low and
does not depend on the number of SUs, 3) the proposed
algorithm can be directly applied to other resource control
problems, e.g., spectrum allocation, time scheduling, etc.

It is proved that, the CR network with this simple algorithm
can achieve a time average performance as good as that
achieved when the Nash equilibrium (NE) is chosen in hind-
sight. More specifically, we show that by using the proposed
algorithm the average performance of each SU converges to
an ϵ-NE at a rate of Tϵ = O

(
exp

(
1
ϵ

))
. This is a surprising

result because finding the NE for multi-user networks is
generally a challenging task even when the number of users
is small [6, Chapter 2], and most of the previously reported
NE-approaching algorithms only focus on the instantaneous
performance and require more stringent conditions than ours.
To further improve the convergence rate, a sub-optimal al-
gorithm is also proposed to approach a neighborhood of the
NE at a rate of Tϵ′

log Tϵ′
= O

(
1
ϵ′

)
. We discuss some potential

extensions of our work and present numerical results to verify
the performance of our algorithms under different applications.

The rest of this paper is organized as follows. The network
model and problem setup are discussed in section II. The
proposed algorithm and its convergence result are presented
in Sections III. Applications and numerical results are given
in Section IV and the paper is concluded in Section V.

II. NETWORK MODEL AND GAME FORMULATION

Consider a CR network in which K secondary SD pairs,
labeled as S1 to D1, S2 to D2, ..., SK to DK , simultaneously
transmit signals in the same spectrum as M PUs, labeled as P1,
P2, ..., PM as shown in Figure 1. Let the channel gain between
Si and Dj be hSi,Dj for i, j ∈ {1, 2, ...,K}, and that between
Si and Pk be hSi,Pk

for i ∈ {1, 2, ...,K}, k ∈ {1, 2, ...,M}.
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Fig. 1. Network model for CR networks with multiple SD pairs.

In a practical system, Pk for k ∈ {1, 2, ...,M} can only
maintain a certain level of QoS if its received interference
power is lower than the interference temperature limit, denoted
by qk. By denoting the transmit power of Si as wi, we can
define the power constraints for SUs as follows:

HPUw
† ≤ q†, (1)

where † denotes the transpose of a matrix, w =
[w1, w2, . . . , wK ], q = [q1, q2, . . . , qM ], and HPU ∈ RM×K

is given by

HPU =


hS1,P1 hS2,P1 · · · hSK ,P1

hS1,P2 hS2,P2 · · · hSK ,P2

...
...

. . .
...

hS1,PM
hS2,PM

· · · hSK ,PM

 . (2)

Based on the above notations, the received signal to noise
ratio (SNR) of Di can be written as

SNRi =
hSi,Diwi∑

j∈{1,2,...,K}
j ̸=i

hSj ,Diwj + σi
. (3)

where if PUs keep sending signals during the communication,
σi should contain both the transmit powers of PUs and the ad-
ditive noise received by Si. However, if SUs can only transmit
when PUs are absent, i.e., in the time sharing spectrum (TSS)
based CR networks [7], σi should only contain the additive
noise of Si.

In this paper, the game theoretic method is used to investi-
gate the power control problem for CR networks. In our game,
players are SUs who share the spectrum with PUs. We define
the revenue of the ith SD pair, denoted by ri, to be the benefit
obtained by Si and Di from using the PUs’ spectrum. The
price paid by Si, denoted by ci, is defined as the price charged
by PUs for using the licensed spectrum. We also define the
payoff of the ith SD pair, denoted by πi, to be the difference
between the revenue and price, i.e., πi = ri − ci. In this
paper, we assume the revenue and payoff of Si are functions
of SNRi defined in (3).

In this paper, a finitely repeated game model [8] is applied in
which each SU plays the game repeatedly. By using subscript
[t] to denote the setting and operations in the tth period, the
main objective of the ith SD pair is to maximize its time
average payoff 1

T

∑T
t=1 πi(w[t]) over T periods of transmis-

sion without causing the adverse effects on other SD pairs.

This is different from most of the reported work in repeated
game where each player only cares about the payoff of the
last iteration, i.e., payoff in the T th time slot. Our setting has
more practical meaning for CR networks because most mobile
devices can tolerate a few periods of “bad” performance if the
average payoff is good.

It is assumed that each player cares the performance of
the future as same as that of the present and hence the time
discount factor [8, Definition 6.1.2] is 1. The results with other
choice of the time discount factor can be similarly obtained.
The main objective is to find a balance point of the entire
network, called Nash Equilibrium (NE), in which each SD
pair cannot further improve its payoff by choosing a different
transmit power, given the transmit powers of other SUs. In this
paper, a distributed algorithm is introduced to enable each SU
to iteratively adjust its power to reach the NE. The definition
of NE is given as follows.

Definition 1. [8, Definition 3.3.4] A strategy profile w∗
i is at a

Nash equilibrium (NE) if, for every player i and every strategy
wi, w∗

i is at least as good as the strategy profile (wi, w
∗
−i) in

which the player i chooses wi while other players choose w∗
−i,

i.e., for every player i, πi(w
∗
i , w

∗
−i) ≥ πi(wi, w

∗
−i), where

subscript −i means all the players except player i. We also
define a strategy profile to be ϵ-Nash equilibrium (ϵ-NE), if
this strategy profile is within the distance of ϵ to the payoff
achieved by a NE, i.e., the following condition needs to be
satisfied, πi

(
w∗

i , w
∗
−i

)
− πi

(
wi, w

∗
−i

)
≤ ϵ for ϵ > 0.

Finding the NE of the multi-user network is difficult and
intractable [6, Chapter 2]. In this paper, we try to develop an
algorithm that, during T periods of repeated power control
games, can achieve the average performance nearly as good
as the system with the NE decision being chosen in hindsight,
i.e., we have

lim
T→∞

1

T

T∑
t=1

min
l∈{1,...,t}

∥π
(
w[l]

)
− π (w∗)∥22 = 0 (4)

where π(w[l]) = [π1(w[l]), π2(w[l]), ..., πK(w[l])].

III. MAIN RESULTS

Algorithm 1 is illustrated below.
Algorithm 1

1) Initialization: Let the transmit signals of Si be xi. Con-
sider the transmission of the ith SD pair. During the first
2 time slots, i.e., t ∈ {1, 2},
a) Si first sends signals xi[1]and xi[2] with powers wi[1]

and wi[2], respectively,
b) After receiving the signals sent by Si in the first

and second time slots, Di feedbacks the revenue
functions ri[1] and ri[2], respectively, decided by its
received SNR, and PUs feedback prices ci[1] and
ci[2], respectively, to Si.

2) Iteration: For t = 3 : T ,
a) In time slot t, Pk monitors its interference power∑K

i=1 hSi,Pk
wi[t]. If the interference powers of all
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PUs satisfy (1), Pk only sends price ci[t] to Si, and
then Si updates its transmit power as follows,

wi[t] =
(
wi[t−1] − δi[t−1]gi[t]

)+
, (5)

where (·)+ = max{0, ·}, gi[t] is a subgradient [9] of
πi[t] which is a function that satisfies the relation

πi[t]

(
w[t]

)
≥ πi[t−1]

(
w[t−1]

)
+gi[t]

(
w[t] −wi[t−1]

)
, (6)

and δi[t−1] is the step size of the tth iteration, defined
as δi[t−1] =

ui

t−1 where ui is the step size coefficient
which is a constant controlling the iteration speed,

b) However, if the interference powers of some PUs ex-
ceed the interference temperature limit, each of these
PUs should transmit more information to help SUs
to adjust the transmit powers during the following
iterations. More specifically, assuming Pk observes
high interference power, i.e.,

∑K
i=1 hSi,Pk

wi[t] > qk,
the operations of Pk, except for sending the price to
SUs, are described as follows,
i) Pk broadcasts a high-interference-message to in-

form all SUs that its interference power exceeds
the limit. Si can decode this message and exploit
it to obtain hSi,Pk

,
ii) Because we assume each PU monitors its inter-

ference power in each iteration, Pk can calculate
the exceeding interference power value

Ik[t] =
K∑
i=1

hSi,Pk
wi[t] − qk, (7)

and the interference power change value in time
slot t

Jk[t] =
K∑
i=1

hSi,Pk
wi[t] −

K∑
i=1

hSi,Pk
wi[t−1], (8)

iii) By assuming the channel gains can be known
by the receivers (i.e., by using a training code
involved in the transmit signals of SUs), Pk can
exploit its received signal to calculate a constant
Φk[t] =

∑K
i=1 h

2
Si,Pk

and broadcast this constant
to all SUs,

iv) Si, knowing hSi,Pk
(as discussed in Step i)),

updates its transmit power by

wi[t] =
[
wi[t−1] − δi[t−1]gi[t] (9)

−hSi,Pk
Φ−1

k[t−1]

(
Ik[t−1] − Jk[t−1]

)]+
.

If more than one PU detects higher-than-tolerate
interference power, they should sequentially repeat
the operations illustrated from Step i) to iv) until the
transmit powers of all SUs satisfy (1).

3) Termination: The above process continues until the ob-
tained payoff is close to the optimal value within an
acceptable range, i.e., ∥πi[t](w[t]) − πi[t](w

∗)∥22 ≤ ϵ, or
the number of time slots reaches T , i.e., t = T .

The main idea of Algorithm 1 is that, if the transmit powers
of SUs satisfy (1), each SU maximizes its payoff by using

the subgradient method, as shown in Step 2-a). If some PUs
detect a higher-than-tolerable interference power, each of them
broadcasts several constants, i.e., Pk broadcasts Ψk, Ik and Jk
defined in Step 2) in Algorithm 1 to all SUs, and SUs use these
constants to project their transmit powers into the convex hull
defined in (1). However, simply projecting the transmit powers
of all SUs to (1) requires each PU to know the information
of other PUs, which does not meet the requirements that PUs
cannot communicate with each other. Hence, in Algorithm 1,
if more than one PU detect higher-than-tolerable interference
power, each of them informs SUs to project their powers to
the linear equations in the convex hull defined in (1) one by
one. This setting will not result in much adverse effects on the
convergence performance of Algorithm 1 because we always
assume T ≫ K and if the transmit powers of SUs increase
gradually, only a few PUs can first detect high-than-tolerable
interference powers in each time slot. Therefore, the number
of iterations used on the projection operations is negligible as
the total number of iterations becomes large.

Note that our algorithm is different from that proposed in
[10] in which each SU needs to communicate with its nearby
SUs to make decisions based on the “consensus” among them.
In our algorithm, each PU (or SU) cannot communicate with
its nearby PUs (or SUs), and hence can be directly applied
into many practical systems, i.e., the cellular based mobile
network.

Theorem 1. If the following three assumptions
A1) The iteration step sizes are bounded, i.e., ∥gi[t]∥22 ≤

g+i , where g+i is a constant, and
A2) The power changes between two iterations are

bounded, i.e., ∥wi[t] − wi[s]∥22 ≤ w+
i for t ̸=

s and t, s ∈ {1, ..., T}, where w+
i is a constant, and

A3) The payoff for the ith SD pair is a continuous
function of wi,

are satisfied, then Algorithm 1 has the following properties.
P1) It converges to a stationary point if T is large

enough,
P2) If all SD pairs use Algorithm 1, the time average

payoff of Si converges to an ϵ-NE at a rate of
O
(
exp

(
1
ϵ

))
1, i.e.,∥∥∥∥∥ 1

Tϵ

Tϵ∑
t=1

π
(
w[t]

)
− π (w∗)

∥∥∥∥∥
2

2

≤ ϵ. (10)

Proof: See Appendix A.
Note that the convergence performance of Algorithm 1 is

closely related to the combination of two important parame-
ters: the initial value wi[1] of transmit powers and the iteration
step size ui. If wi[1] and ui satisfies |wi[1] − w∗

i | ≈ ui,
Algorithm 1 could approach to the neighborhood of a NE
within a few iterations. However, if wi[1] and ui are improperly
chosen, the convergence rate of Algorithm 1 will be very slow.
This slow convergence rate is due to the fact that we require wi

to reach w∗
i exactly without assuming any information about

1In this paper, we follows Bachmann-Landau notations: f = O(g) if
lim

n→∞
f(n)
g(n)

< +∞.
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the systems or channel gains is known by SUs. The slow
convergence performance of Algorithm 1 can be improved
by assuming more information to be observed by SUs. For
example, if we assume that Si knows the payoff functions,
or both the revenue and pricing functions, the optimization
problem can be converted into the Lagrangian dual problem
[11] which will be discussed in the next section.

Another way to improve the convergence rate of Algorithm
1 is to decrease the required accuracy of the results. In
practical digital systems, mobile devices cannot adjust their
parameters with an infinite accuracy, i.e., the value of wi can
only be chosen from a finite discrete set. In the rest of this
section, let us consider a simple case in which the transmit
power of each SU is linearly quantized into L levels and wi

can only be chosen from this finite set, i.e., wi ∈ Wi where
Wi = {0, w+

i

L ,
2w+

i

L , ..., w+
i }. Let us describe Algorithm 2 as

follows.
Algorithm 2: Each SU adjusts its transmit power by using

the exact same procedures as Algorithm 1. The only difference
is that, in the tth iteration, the transmit power of Si is wi[t] =

lδ̂i if lδ̂i − δ̂i
2 < wi[t] < lδ̂i +

δ̂i
2 where l ∈ {1, 2, ..., L}, δ̂i =

w+
i

L and wi[t] is calculated by using equation (9) in Algorithm
1.

The NE is a balance point where each player achieves
locally optimal solution and hence has no incentive to de-
viate from this point. In other words, we can always find
a neighborhood, denoted as χ = [χ1, χ2, ..., χK ], for the
NE that all the elements in this neighborhood cannot achieve
higher performance than that of the NE, i.e., πi(w

∗
i , w

∗
−i) ≥

πi(w
∗ ± ∆w) where ∆w = [∆w1,∆w2, ...,∆wK , ] and

0 < ∆wi < χi for i ∈ {1, 2, ...,K}. It is easy to observe
that if w[t] −w[t+1] > χ, Algorithm 2 cannot converge to a
NE. Let us summarize our observations and present the main
result for Algorithm 2 as follows.

Theorem 2. If wi ∈ Wi, χi ≫
δ̂ig

+
i

2 ∀ i ∈ {1, 2, ...,K} and
Assumptions A1)-A3) in Theorem 1 are satisfied, Algorithm 2
approaches a

[
δ̂1g

+
1

2 ,
δ̂2g

+
2

2 , ...,
δ̂Kg+

K

2

]
neighborhood of the NE,

i.e.,

∥∥∥∥∥ 1
Tϵ′

Tϵ′∑
t=1

π
(
wi[t], w

∗
−i[t] ±

δ̂ig
+
i

2

)
− π

(
w∗ ± δ̂ig

+
i

2

)∥∥∥∥∥
2

2

≤

ϵ′, at a rate of Tϵ′
log Tϵ′

= O
(
1
ϵ′

)
, where ϵ′ = |ϵ− δ̂ig

+
i

2 | and

δ̂i =
w+

i

L .

Proof: See Appendix B.

IV. APPLICATIONS AND NUMERICAL RESULTS

In this section, the proposed algorithms are applied to the
network utility maximization problem to evaluate its perfor-
mance. We assume that each SU has an objective to maximize
its achievable rate and define the revenue function of Si as
ri(wi) = γi log (1 + SNRi) where SNRi is defined in (3)
and γi is a constant. Since Algorithm 2 can be regarded as
a special case of Algorithm 1, we only present the numerical
results for Algorithm 1.

Consider a special case where SUs are far from each other
and assume SNRi ≈ hSi,Di

wi

σi
. Assume PUs do not charge
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Fig. 2. Comparison of different algorithms, where M = 1,K = 10, qk =
2, ui =

1
∥gi[t]∥22

, for i ∈ {1, 2, ...,K}, k ∈ {1, 2, ...,M}.

any prices for SUs if the transmit powers of SUs satisfy (1).
It is observed that, in this case, the payoff function πi(w) of
Si has the following features: 1) it is continuous in w, 2) it
is concave in wi, 3) it has a continuous first derivative with
respect to wi, and 4) there exists r = {r1, r2, ..., rK} > 0 such
that

∑K
i=1 riπi(w) is diagonally strictly concave. Following

the same methods as in [12, Chapter 5], we can claim that,
for this CR networks, the NE is unique and corresponds to the
global utility maximization point [11]. In other words, if all
SUs use Algorithm 1 to adjust their transmit powers, the payoff
of the network will converge to the global utility maximization

point, defined as max
w

1
K

K∑
i=1

πi (w), under the power constraint

defined in (1).
To demonstrate the convergence performance of Algorithm

1, results for the dual methods discussed in [11] are also
provided. In this method, Si iteratively chooses the optimal
Lagrange coefficients to maximize its payoff (see [11] for
the detailed description of the dual method). In Figure 2,
we compare the convergence rates of Algorithm 1 and the
dual method. It is observed that, in general, the dual method
converges to the optimal value at a faster rate than Algorithm
1. However, each SU in the dual method needs to know the
payoff functions of all SUs and is able to search for the
optimal power to minimize the objective function in each
iteration which incurs much more computational complexity
and communication overhead than our proposed algorithm.
In addition, as is observed in Figure 2, if the step size are
chosen optimally, the convergence rate of Algorithm 1 could
outperform that of the dual methods.

Let us consider a more general case as follows. Define the
revenue of Si as ri = αi log (1 + SNRi) where SNRi is
given in (3) and αi is a constant. The pricing function charged

by all PUs from Si is given by ci = βi

M∑
k=1

hSi,Pk
wi where

βi is a constant. Note that this problem is not convex and is,
in general, impossible to efficiently find the global optimal
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solution [13]. In this case, Algorithm 1 may not converge to
the global utility maximization point, but can still converge to
a NE. The convergence results of Algorithm 1 with different
parameters in this case is presented in Figures 3 and 4. As
observed in Section III, the convergence rate of Algorithm 1
depends on the initial transmit powers of SUs and the iteration
step size. It is observed that, if wt[1] has a distance of ui

from a NE, only a few number of iterations are required to
approach the performance of this NE. However, if the initial
transmit powers are not properly chosen, the adjustment of
Algorithm 1 on the transmit powers of SUs may require a large
number of iterations. Similarly, an optimal value of ui should
be close to the distance between wi[1] and w∗

i . However, if no
information about initial transmit power and the optimal power
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are known, a large step size may lead to high fluctuations
during the first few iterations and a small step size will
cause slow convergence rate. The above observation shows the
importance of choosing proper combination of initial powers
and step sizes. In a practical system, SUs can first send the
training code to let PUs to decide proper initial values of
SUs’ transmit powers. Also, the step size of each iteration,
chosen by each SD pair, can be adjusted if more information
can be observed or more feedback messages can be received
during the communication, i.e., the dual methods. Finding the
distributed algorithms to allow iterative improvement of the
step size in Algorithm 1 will be our future work.

Let us consider the numerical results of CR networks with
Algorithm 1. Denote the distance between two users p and
q as dp,q for p, q ∈ [S1, S2, ..., SK ] ∪ [D1, D2, ..., DK ] ∪
[P1, P2, ..., PM ] and consider the following channel models,
hij = h̃ij/d

η
Si,Dj

and hik = h̃ik/d
η
Si,Pk

, where h̃ij and
h̃ik are average channel fading coefficients unrelated to the
distance of the transmission and η is the channel attenua-
tion exponent. Assume that SUs are located on a regular
planar network, i.e., dSi,Pk

= dSj ,Pl
, dSi,Di = dSj ,Dj ,

dSi,Dj =
√
d2Si,Sj

+ d2Sj ,Dj
and dSi,Si+1 = dDj ,Dj+1 , for

i, j ∈ {1, 2, ...,K} and k, l ∈ {1, 2, ...,M}. In Figure 5, the
average payoff of the network obtained by using Algorithm 1
with different dSi,Di is shown and compared with that of the
fixed transmit power method. It is observed that the proposed
algorithm greatly improves the performance of CR networks.
More importantly, even with the small number of iterations,
Algorithm 1 can achieve a significant payoff improvement.

V. CONCLUSION

In this paper, the power control problem for SSS based
CR networks with multiple secondary SD pairs and PUs is
investigated. A simple distributed algorithm has been proposed
to iteratively improve the performance of CR networks. It is



6

proved that the proposed algorithm converges to an ϵ-NE at a
speed of Tϵ = O

(
exp

(
1
ϵ

))
. A sub-optimal algorithm is also

proposed to converge to a neighborhood of a NE at a rate of
Tϵ′

log Tϵ′
= O

(
1
ϵ′

)
. Numerical results have been presented to

show the convergence rates under different settings.

APPENDIX A
PROOF OF THEOREM 1

From Definition 1, it is observed that for a NE, a neighbor-
hood can always be found in which all the elements in this
neighborhood has lower payoff than the NE. By assuming all
payoff functions of SUs to be continuous, the neighborhood
of the NE can be regarded as a quasiconcave hull, i.e.,
for χ = [χ1, χ2, ..., χK ] neighborhood of a NE, we have
πi (w

∗ ±∆w) < πi (w) where w ∈ [w∗ −∆w,w∗ + ∆w]
and ∆wi ≤ χi. Since Algorithm 1 uses a decreasing step
size for iteration, it will finally fall into a quasiconcave hull
of the NE. Therefore, if Algorithm 1 is proved to converge
to a stationary point in which all elements in a neighbor-
hood of that point has lower payoffs, we can claim that
this point is the NE and Algorithm 1 converges. Defining
g[t] = [g1[t], g2[t], ..., gK[t]]

†, we can re-write (9) in Algorithm
1 to the vector form in (11) at the top of next page.

where HPQ is a sub-matrix of HPU which only contains
the channel gains connected with one PU observing high inter-
ference noises in its rows, and δ[t] = diag[δ1[t], δ2[t], ..., δK[t]].

Let us first consider the case that the transmit powers of
the SUs always satisfy (1). Denoting a NE achieving power
control schemes for all the SUs as w∗ = [w∗

1 , w
∗
2 , ..., w

∗
K ]†,

we have

1

T

T∑
t=1

∥w[t+1] −w∗∥22
(a)
=

1

T

T∑
t=1

∥w[t] −w∗ − δ[t]g[t]∥22

=
1

T

T∑
t=1

[
∥w[t] −w∗∥22 − 2δ[t]g[t]

(
w[t] −w∗)

+δ2[t]∥g[t]∥22
]

(b)

≤ 1

T

T∑
t=1

[
∥w[t] −w∗∥22 − 2δ[t]

(
π
(
w[t]

)
− π (w∗)

)
+δ2[t]∥g[t]∥22

]
, (12)

where (a) and (b) is obtained by using (5) and (6) in Algorithm
1, respectively. (12) can be rewritten recursively as follows:

1

T

T∑
t=1

∥∥w[t+1] −w∗∥∥2
2
≤
∥∥w[1] −w∗∥∥2

2

− 2

T

T∑
t=1

t∑
l=1

δ[l]
(
π
(
w[l]

)
− π (w∗)

)
+

1

T

T∑
t=1

t∑
l=1

δ2[l]

∥∥∥g[l]

∥∥∥2
2
. (13)

Note that we have 1
T

∑T
t=1 ∥w[t+1] −w∗∥22 ≥ 0, and the

second term in the right-hand-side of (13) can be expressed

as follows:

2

T

T∑
t=1

t∑
l=1

δ[l]
(
π
(
w[l]

)
− π (w∗)

)
≥ 2

T

T∑
t=1

(
t∑

l=1

δ[l]

)
min
l∈[1,t]

[
π
(
w[l]

)
− π (w∗)

]
(c)

≥

(
2

T

T∑
t=1

t∑
l=1

δ[l]

)
1

T

T∑
t=1

min
l∈[1,t]

[
π
(
w[l]

)
− π (w∗)

]
(14)

where (c) comes from that fact that
∑t

l=1
1
l ≥

1
T

∑T
t=1

∑t
l=1

1
l .

Substituting (14) into (13), we have

1

T

T∑
t=1

min
l∈[1,t]

[
π
(
w[t]

)
− π (w∗)

]

≤

∥∥w[1] −w∗
∥∥2
2
+ 1

T

T∑
t=1

t∑
l=1

δ2[l]

∥∥∥g[l]

∥∥∥2
2

2
T

T∑
t=1

t∑
l=1

δ[l]

. (15)

Substituting the step size function δ[l] = u
l for u =

[u1, u2, ..., uK ] into the above equation and using the result∑t
l=1

1
l2 <

∑∞
l=1

1
l2 = π

6 , and the properties of Harmonic
number:

∑t
l=1

1
l = log t + 1

2 t
−1 − 1

12 t
−2 + O(t−4) ≈

log t+ 1
2 t

−1− 1
12 t

−2+κ̇, the following results can be obtained:

1

T

T∑
t=1

min
l∈[1,t]

[
π
(
w[l]

)
− π (w∗)

]
(d)

≤
w+ + w+

T

∑T
t=1

π
6

2
T

∑T
t=1 (log t+ 0.5t−1 + κ̇)

≈ κ̈
2
T

∑T
t=1 log t+

log T+0.5T−1+κ̇
T + 2κ̇

(16)

where (d) is obtained from Assumptions A1) and A2)
in Theorem 1. κ̈ is a constant defined as κ̈ = w+ +
g+ π

6 . Because
∑T

t=1 log t = Θ(T log T ) 2 and hence
limT→∞

1
T

∑T
t=1 log t → ∞ and limT→∞

log T+0.5T−1

T →
0, it can be claimed that Algorithm 1 converges to a s-
tationary point. Assume that for T ≥ Tϵ and Tϵ is a
very large number, we try to achieve the accuracy of
1
T

T∑
t=1

min
l∈[1,t]

[
π
(
w[l]

)
− π (w∗)

]
= ϵ. From (16) and concavi-

ty of logarithm function, the following results can be obtained,

κ̈

ϵ
≥ lim

Tϵ→∞

1

Tϵ

Tϵ∑
t=1

log t+
log Tϵ + 0.5T−1

ϵ

Tϵ
+ 2κ̇

= lim
T→∞

log

(
1

Tϵ

Tϵ∑
t=1

t

)
= log

(
Tϵ + 1

2

)
⇒ Tϵ = O

(
exp

(
1

ϵ

))
.

2Again, we follow Bachmann-Landau notations: f = Θ(g) if f = O(g)
and g = O(g)
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w[t+1] =

{
w[t] − δ[t]g[t], if HPUw[t] ≤ qj ,

w[t] − δ[t]g[t] −H†
PQ

(
HPQH

†
PQ

)−1 (
HPQw[t] −HPQδ[t]g[t] − q

)
, otherwise,

(11)

Therefore, we can claim that by using Algorithm 1, the
average payoff of SU networks converges to ϵ-NE at a speed
of Tϵ = O

(
exp

(
1
ϵ

))
.

Consider the case that at least one PU observes the higher-
than-tolerable interference power. By multiplying (11) with
HPQ, it can be easily shown that HPQw

†
[t+1] always con-

verges to q†. Substituting HPQw
†
[t+1] = q† into (11), (11)

can be rewritten as w[t+2] = w[t+1] − δ[t+1]g̃[t+1]g[t+1],

where g̃[t+1] = I + H†
PQ

(
HPQH

†
PQ

)−1

HPQ and I is
the identity matrix. If we denote g[t] = g̃[t]g[t] and assume
∥g̃[t]g[t]∥22 ≤ g+, the same method as the previous case can
be used to obtain the similar convergence rate.

APPENDIX B
PROOF OF THEOREM 2

Following the same steps as in Appendix A, let us consider
the case that each SU can only choose from L quantized power
levels, i.e., wi ∈ Wi. In this case, if the initial point is not
appropriately chosen, Algorithm 2 will be unstable for the first
few iterations, i.e., fluctuating between different neighborhood
of NEs. However, when the number of iterations is large, the
transmit powers of SUs will approach to the neighborhood of
a NE. Therefore, for a large number of iterations, Algorithm
2 can be regarded as Algorithm 1 with a constant step size
δ[l] = δ̂ where δ̂ = w+

L is a constant. Let us substitute this
step size in (15), the following results can be obtained,

1

T

T∑
t=1

min
l∈[1,t]

[
π
(
w[l]

)
− π (w∗)

]
≤ 1

T

T∑
t=1

w+ + (δ̂
2
g+/t)

∑t
l=1 l

(2δ̂/t)
∑t

l=1 l

=
1

T

T∑
t=1

w+ + δ̂
2
g+ (t+ 1)

2δ̂ (t+ 1)
. (17)

By using the same method as in Appendix A, we can claim
that if the step size is fixed, the number of iterations for
Algorithm 2 is given by log T ′

ϵ

T ′
ϵ

= O (1/ϵ′) where ϵ′ = ϵ− δ̂g+

2

and δ̂ = w+

L .
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